Math, asked by trilakshitha, 5 months ago

24. In figure. OA=7 cm, AB = 3.5 cm. Calculate
the perimeter and area of the shaded region.

The answer is 34.5cm , 48.125cm2

Please don't spam.
If you will spam then I will report all your answers and delete them..​

Attachments:

Answers

Answered by isalreadytaken
2

Answer:

area:48.125

perimeter:12.5

Step-by-step explanation:

area of shaded region=area of sector OCB- area of sector ODA

area of shaded region= 90/360*pi*(7+3.5)^2 - 90/360*pi*(7)^2

=90/360*pi*(110.25-49)

=1/4*pi*

=1/4*pi*(61.25)

=48.125

perimeter of shaded region=perimeter of sector OCB- perimeter of sector ODA

perimeter of shaded region=2*10.5+(90/360*2*pi*10.5)- 2*7-(90/360*2*pi*7)

=

21+(90/360*2*pi*10.5)-14-(90/360*2*pi*7)

=21+(16.5)-14-11

=12.5

Answered by MagicalBeast
4

Given :

  • OA = 7cm
  • AB = 3.5 cm

To find :

  • Perimeter of shaded region
  • Area of shaded region

Formula used :

 \sf \bullet \: Area \:  of  \: quadrant  \: =  \dfrac{1}{4}  \times \pi( {r}^{2} ) \\  \\  \sf \bullet \: Length \:  of  \: arc \:  =  \dfrac{ \theta}{360}  \times 2\pi \: r

Let :

  • Radius of outer quadrant (OB) = R
  • Radius of inner quadrant (OA) = r

Solution :

◈ OB = OA + AB

➠ OB = 7 + 3.5 = 10.5cm

◈ Perimeter of shaded region = = Length of arc BC + CD + length of arcDA + AB

 \sf \implies \: Perimeter  \: of  \: shaded \:  region \:  =  (\dfrac{ \theta}{360}  \times 2\pi \times R\: ) + \:BC + ( \dfrac{ \theta}{360}  \times 2\pi  \times r) + AB \\  \\  \sf \implies \: Perimeter  \: of  \: shaded \:  region \:  =  (\dfrac{ 90}{360}  \times 2 \times  \dfrac{22}{7} \times 10.5\: ) + \:3.5 + ( \dfrac{ 90}{360}  \times 2 \times  \dfrac{22}{7}  \times 7) + 3.5\\  \\   \sf \implies \: Perimeter  \: of  \: shaded \:  region \:  =  (16.5 ) + (\:3.5 )+ ( 11) +  \: (3.5) \: \\  \\  \sf \implies \: Perimeter  \: of  \: shaded \:  region \:  = 34.5cm

◈ Area of shaded region = Area of quadrant (OBCO) - Area of quadrant (OADO)

 \sf \implies \: Area  \: of \:  shaded \:  region \:  =  \dfrac{1}{4}\pi {R}^{2}  -  \dfrac{1}{4} \pi {r}^{2}  \\  \\  \sf \implies \: Area \:  of  \: shaded  \: region \:  =   \dfrac{1}{4} \pi( {R}^{2}  -  {r}^{2} ) \\  \\  \sf \implies \: Area \:  of \:  shaded \:  region \:  =   \dfrac{1}{4} \pi( {10.5}^{2}  -  {7}^{2} ) \\  \\ \sf \implies \: Area \:  of \:  shaded \:  region \:  =   \dfrac{1}{4} \pi(110.25 - 49) \\  \\ \sf \implies \: Area \:  of \:  shaded \:  region \:  =   \dfrac{1}{4} \times  \dfrac{22}{7} (61.25) \\  \\ \sf \implies \: Area \:  of \:  shaded \:  region \:  =  48.125 {cm}^{2}

ANSWER :

  • Perimeter = 34.5 cm
  • Area = 48.125cm²
Similar questions