Math, asked by Brainlyaccount, 1 year ago

24 को दो धनात्मक भागों में विभक्त कीजिए जबकि उनके वर्गों का योग 488 है

Answers

Answered by SidVK
0
माना पहली संख्या x है।

तो दूसरी संख्या (24 - x) होगी।

=> प्रश्नानुसार,

x^2 + (24 - x)^2 = 488

x^2 + 576 + x^2 - 48x = 488

2x^2 - 48x + 576 - 488 = 0

2x^2 - 48x + 88 = 0

x^2 - 24x + 44 = 0

x^2 - (22 + 2)x + 44 = 0

x^2 - 2x - 22x + 44 = 0

x(x - 2) - 22(x - 2) = 0

(x - 22)(x - 2) = 0

अतः, x = 2 या 22

अतः, पहली संख्या = x = 2
तो, दूसरी संख्या = 24 - x = 22 ●●

अथवा,

पहली संख्या = x = 22
तो, दूसरी संख्या = 24 - x = 2...●●

●●●●●●●●●●●●●●●●●

Hope it was helpful. Please mark as brainliest.
Answered by Swarnimkumar22
9
हल-

माना एक भाग x है तब दूसरा भाग (24 - x) होगा


प्रश्नानुसर x² + (24 - x² ) = 488


 {x}^{2}  + 576 +  {x}^{2}  - 48x = 488 \\  \\  {2x}^{2}  - 48x + 576 - 488 = 0 \\  \\  {2x }^{2}  - 48x + 88 = 0


या

 {x}^{2}  - 24x + 44 = 0 \\  \\  {x}^{2}  - 2x - 22x + 44 = 0 \\  \\  \\ x(x - 2) - 22(x - 2) = 0 \\  \\  \\ (x - 2)(x - 22) = 0


या  x = 2,22


अत: अभीष्ट दो भाग् 2 , 22
Similar questions