Math, asked by shruthikaxoxo, 2 months ago

 


                                

24. O is a point in the interior of ∆ ABC , such that BO and CO are the bisectors of ∠B and ∠ C respectively . Find ∠ A if ∠ BOC = 1350 .





   ​

Attachments:

Answers

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{O  \: is \:  point \:  in  \: interior \:  of \:  \triangle \:  ABC} \\ &\sf{BO \: is \: angle \:  bisector \: of \: \angle \: B \:  }\\ &\sf{CO \: is \: angle \: bisector \:  of \:  \angle \: C } \\ &\sf{\angle \: BOC = 135 \degree}\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: find - \begin{cases} &\sf{\angle \: A }  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\rm :\implies\:In \: \triangle \: ABC

  • BO is angle bisector of ∠B

 \implies \:  \boxed{ \red{ \tt \: \angle \: ABO=\angle \: OBC \:  =  \: x \: (say)}}

  • CO is angle bisector of ∠C.

 \implies \:  \boxed{ \red{ \tt \: \angle \: OCA = \angle \: OCB\:  =  \: y \: (say)}}

Now,

 \implies \:  \boxed{ \red{ \tt \: In \: \triangle \: BOC}}

We know,

  • Sum of the angles of a triangle is supplementary.

\rm :\implies\:\angle \: BOC \:  +\angle OCB \:  + \angle \: OBC \:  = 180 \degree

\rm :\implies\:135 + x + y = 180

\rm :\implies\: \boxed{ \pink{ \bf \:x + y  \:  =  \tt \: 45 \degree}} -  - (1)

Now,

 \implies \:  \boxed{ \red{ \tt \: In \: \triangle \: ABC}}

\rm :\implies\:\angle \: ABC \:  + \angle \: BCA  \: \angle \: BAC \:  = 180 \degree

\rm :\implies\:2x + 2y + \angle \: A  \:  = 180

\rm :\implies\:2(x + y) + \angle \: A  = 180

\rm :\implies\:2(45 \degree) + A  = 180 \degree \:  \:  \{ \green{using \: (1)} \}

\rm :\implies\:90 \degree \:  +  \: \angle \: A  = 180 \degree

\rm :\implies\: \boxed{ \pink{ \bf \:\angle \: A   \:  =  \tt \: 90 \degree}}

Additional Information

Properties of a triangle

  • A triangle has three sides, three angles, and three vertices.

  • The sum of all internal angles of a triangle is always equal to 180°. This is called the angle sum property of a triangle.

  • The sum of the length of any two sides of a triangle is greater than the length of the third side.

  • The side opposite to the largest angle of a triangle is the largest side.

  • Any exterior angle of the triangle is equal to the sum of its interior opposite angles. This is called the exterior angle property of a triangle.

Based on the angle measurement, there are three types of triangles:

  • Acute Angled Triangle : A triangle that has all three angles less than 90° is an acute angle triangle.

  • Right-Angled Triangle : A triangle that has one angle that measures exactly 90° is a right-angle triangle.

  • Obtuse Angled Triangle : triangle that has one angle that measures more than 90° is an obtuse angle triangle.

Similar questions