Math, asked by yjchiranth123, 2 months ago

24
Three Marks Questions
4. I 15 sin 0 = 8 cos 0, then find the value of
1+ sine
coto.
1-cos
ATT DTTMA
001AVKOVT​

Attachments:

Answers

Answered by Anonymous
24

\rm Answer:-

\rm \dfrac{375}{16}

\rm Given :-

\rm 15sin\theta = 8cos\theta

\rm To \: Find :-

\rm \dfrac{1+sin\theta}{1-cos\theta} \times cot\theta

\rm Solution :-

\rm As \:they \: given\: that ,

\rm 15sin\theta = 8cos\theta

\rm So,

\rm \dfrac{sin\theta}{cos\theta} = \dfrac{8}{15}

\rm tan\theta = \dfrac{8}{15} [sinA/cosA= tanA]

\rm From \: this \: we \: can \: also \: find \: sin\theta , cos\theta , cot\theta

\rm tan\theta = \dfrac{opposite}{adjacent }

\rm So,

\rm Opposite\:side = 8 \\Adjacent side = 15

\rm From , Pythagoras \:Theorem, we\: can \: find \: Hypotenuse

\rm (opposite\:side)^2+(adjacent\:side)^2 = (Hypotenuse)^2

\rm (8)^2+(15)^2 = (Hypotenuse)^2

\rm 64+225 = (Hypotenuse)^2

\rm 289 = (Hypotenuse)^2

\rm (17)^2 = (Hypotenuse)^2

\rm Hypotenuse = 17

\rm As, \:we \: know \: that

\rm sin\theta = \dfrac{opposite}{hypotenuse}

\rm cos\theta =\dfrac{Adjacent}{Hypotenuse}

\rm cot\theta = \dfrac{adjacent}{opposite}

\rm Substituting \: the \: values

\rm sin\theta = \dfrac{8}{17}

\rm cos\theta =\dfrac{15}{17}

\rm cot\theta =\dfrac{15}{8}

\rm \dfrac{1+sin\theta}{1-cos\theta} \times cot\theta

\rm Substituting\: the\: values,

\rm \dfrac{1+\dfrac{8}{17} }{1-\dfrac{15}{17} }\times\dfrac{15}{8}

\rm \dfrac{\dfrac{17+8}{17} }{\dfrac{17-15}{17} } \times \dfrac{15}{8}

\rm \dfrac{\dfrac{25}{17} }{\dfrac{2}{17} } \times \dfrac{15}{8}

\rm\dfrac{25}{2} \times \dfrac{15}{8}

\rm \dfrac{25}{2} \times \dfrac{15}{8}

\rm \dfrac{375}{16}

\rm So,\: the \: value \:of \rm \dfrac{1+sin\theta}{1-cos\theta} \times cot\theta \:is\dfrac{375}{16}

\rm Know\:more:-

\rm Trigonometric \:Identities :-

\rm sin^2A +cos^2A = 1

\rm sec^2A - tan^2A = 1

\rm csc^2A - cot^2A =1

\rm Trigonometric \:relations:-

\rm sinA = 1/cscA

\rm cosA = 1 /secA

\rm tanA= 1/cotA

\rm tanA = sinA/cosA

\rm cotA = cosA/sinA

\rm Trigonometric \:ratios:-

\rm sinA = opp/hyp

\rm cosA = adj/hyp

\rm tanA= opp/adj

\rm cotA = adj/opp

\rm cscA = hyp/opp

\rm secA = hyp/adj

Similar questions