Math, asked by vikas4848, 1 year ago

243 = √3 (√3) ^n-1
find value of n ?​

Answers

Answered by arora10704
1

Answer:

243=3^n-1

3^5=3^n-1

5=n-1

n=6

Answered by manjunpai2000
0

Answer:

n = 10

Step-by-step explanation:

243 =  \sqrt{3} (  { \sqrt{3}  \: )}^{n - 1}   \\ \\  \sqrt{x}  =  {x}^{ \frac{1}{2} }  \\  \\  \\  {3}^{5}  =  ({3})^{ \frac{1}{2} } ( {3})^{ \frac{n - 1}{2} }  \\  \\  \\  {x}^{m}  \times  {x}^{n}  =  {x}^{m + n}  \\  \\  \\  {3}^{5}  =  {3}^{ (\frac{1}{2} +  \frac{n - 1}{2}  )}  \\  \\  {3}^{5}  =  {3}^{ (\frac{1 + n - 1}{2}) }  \\  \\  {3}^{5}  =  {3}^{( \frac{n}{2} )}  \\  \\  {x}^{m}  =  {x}^{n}  =>> m = n \\  \\ 5 =  \frac{n}{2}  \\  \\ n = 5 \times 2 \\ n = 10

Similar questions