(243)s power x+1=(243)s power -5 then find the value of x
Answers
SOLUTION
GIVEN
TO DETERMINE
The value of x
CONCEPT TO BE IMPLEMENTED
We are aware of the formula on indices that :
If a is a non zero real number then
EVALUATION
Here it is given that
Now Comparing both sides we get
FINAL ANSWER
Hence the required value of x = - 6
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. Using law of exponents, simplify (5²)³÷5³
https://brainly.in/question/36250730
2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x
https://brainly.in/question/14155738
Answer:
SOLUTION
SOLUTIONGIVEN
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243)
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243)
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINE
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of x
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTED
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n impliesm=n
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n impliesm=nEVALUATION
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n impliesm=nEVALUATIONHere it is given that
SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n impliesm=nEVALUATIONHere it is given that\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243)
x+1
=(243)
=(243) −5
=(243) −5
=(243) −5 Now Comparing both sides we get
=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5
=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1
=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1\sf{ \implies \: x = - 6 }⟹x=−6
=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1\sf{ \implies \: x = - 6 }⟹x=−6FINAL ANSWER
=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1\sf{ \implies \: x = - 6 }⟹x=−6FINAL ANSWERHence the required value of x = - 6
=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1\sf{ \implies \: x = - 6 }⟹x=−6FINAL ANSWERHence the required value of x = - 6━━━━━━━━━━━━━━━━