Math, asked by pragatijha, 1 year ago

(243)s power x+1=(243)s power -5 then find the value of x

Answers

Answered by pulakmath007
3

SOLUTION

GIVEN

 \sf{ {(243)}^{x + 1}  =  {(243)}^{ - 5} }

TO DETERMINE

The value of x

CONCEPT TO BE IMPLEMENTED

We are aware of the formula on indices that :

If a is a non zero real number then

 \sf{ {a}^{m}  =  {a}^{n}  \:  \: implies \:  \: m = n}

EVALUATION

Here it is given that

 \sf{ {(243)}^{x + 1}  =  {(243)}^{ - 5} }

Now Comparing both sides we get

 \sf{ x + 1 =  - 5 }

 \sf{  \implies \: x =  - 5 - 1 }

 \sf{  \implies \: x =  - 6 }

FINAL ANSWER

Hence the required value of x = - 6

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x

https://brainly.in/question/14155738

Answered by fahimasaadatmulla
0

Answer:

SOLUTION

SOLUTIONGIVEN

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243)

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243)

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINE

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of x

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTED

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n impliesm=n

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n impliesm=nEVALUATION

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n impliesm=nEVALUATIONHere it is given that

SOLUTIONGIVEN\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243) x+1 =(243) −5 TO DETERMINEThe value of xCONCEPT TO BE IMPLEMENTEDWe are aware of the formula on indices that :If a is a non zero real number then\sf{ {a}^{m} = {a}^{n} \: \: implies \: \: m = n}a m =a n impliesm=nEVALUATIONHere it is given that\sf{ {(243)}^{x + 1} = {(243)}^{ - 5} }(243)

x+1

=(243)

=(243) −5

=(243) −5

=(243) −5 Now Comparing both sides we get

=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5

=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1

=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1\sf{ \implies \: x = - 6 }⟹x=−6

=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1\sf{ \implies \: x = - 6 }⟹x=−6FINAL ANSWER

=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1\sf{ \implies \: x = - 6 }⟹x=−6FINAL ANSWERHence the required value of x = - 6

=(243) −5 Now Comparing both sides we get\sf{ x + 1 = - 5 }x+1=−5\sf{ \implies \: x = - 5 - 1 }⟹x=−5−1\sf{ \implies \: x = - 6 }⟹x=−6FINAL ANSWERHence the required value of x = - 6━━━━━━━━━━━━━━━━

Similar questions