25(3x-4y)^2-40(9x^2-16y^2)+16(3x+4y)^2
Answers
Answer:
( 3x - 36y )^2
Step-by-step-explanation:
Let,
( 3x - 4y ) = a
( 3x + 4y ) = b
Given equation is : 25( 3x - 4y )^2 - 40( 9x^2 - 16y^2 ) + 16( 3x + 4y )^2.
Now, if you observe the equation, there is a term 9x^2 - 16y^2 which can also be written as ( 3x )^2 - ( 4y )^2 , and now this equation is in the form if a^2 - b^2{ these variables, in this statement, are different from the variables taken in solution } where a represents 3x and b represents 4y. And, from the properties of factorisation we know a^2 - b^2 = ( a + b )( a - b ).
Therefore,
= > 25( 3x - 4y )^2 - 40( 9x^2 - 16y^2 ) + 16( 3x + 4y )^2
= > 25( 3x - 4y )^2 - 40( 3x - 4y )( 3x + 4y ) + 16( 3x + 4y )^2
Replacing ( 3x - 4y ) by a and ( 3x + 4y ) by b :
= > 25a^2 - 40ab + 16b^2.
= > ( 5a )^2 - 2( 5a x 4b ) + ( 4b )^2
= > ( 5a - 4b )^2 { from the properties of factorisation, a^2 - 2ab + b^2 = ( a - b )^2 }
Substituting the correct value of a and b :
= > { 5( 3x - 4y ) - 4( 3x + 4y ) }^2
= > { 15x - 20y - 12x - 16y }^2
= > ( 3x - 36y )^2
Hence the required factorisation of 25( 3x - 4y )^2 - 40( 9x^2 - 16y^2 ) + 16( 3x + 4y )^2 is ( 3x - 36y )^2.