Math, asked by raunaksinghsingh53, 10 months ago

25(a+b)²-49(a-b)² factorise by using identity​

Answers

Answered by deepika8912
7

make my answer the brailiest

Attachments:
Answered by Anonymous
6

GIVEN:-

Factorise 25(a+b)²-49(a-b)²

IDENTITY USED:-

{\large{\boxed{\rm{a^2-b^2=(a+b)(a-b)}}}}

Now,

Let, (a+b) be x, (a-b) be y.......1

\rm{25(a+b)^2-49(a-b)^2}

Let's simplify it.

\rm{5x^2-7y^2}

\rm{(5x+7y)(5x-7y)}

\rm{(5(a+b)+7(a-b))(5(a+b)-7(a-b))}

\rm{(5a+5b+7a-7b)(5a+5b-7a+7b)}

\rm{(12a-2b)(-2a+12b)}

Some of the Useful identity

  • \rm{(a+b)^2=a^2+2ab+b^2}

  • \rm{(a-b)^2=a^2-2ab+b^2}

  • \rm{a^2+b^3=(a+b)(a^2-ab+b^2)}.
Similar questions