Math, asked by Anonymous, 3 months ago

25. Find the value(s) of k so that the equations x² - 11x + k = 0 and x² - 14x + 2k = 0 may have
a common root.
⚠️ No spam ⚠️​

Answers

Answered by adityak4m6le007
4

Answer:

k = 75/4

Step-by-step explanation:

For roots to be equal discriminant must be 0.

i.e.

 {b}^2  - 4ac  = 0

comparing equations x² - 11x + k = 0 and x² - 14x + 2k = 0 with ax² + b + c = 0

in x² - 11x + k = 0

a = 1, b = -11, c = k

and in x² - 14x + 2k = 0

a = 1, b = -14, c = 2k

for x² - 11x + k

 {b}^{2}  - 4ac = 0 \\  { - 11}^{2}  - 4(1)(k)   = 0 \\ 121 - 4k = 0

for x² - 14x + 2k

 {b}^{2}  - 4ac =0 \\   { - 14}^{2}  - 4(1)(2k)  = 0 \\ 196 - 8k = 0

we can write,

121 - 4k = 196 - 8k

8k - 4k = 196 - 121

4k = 75

k = 75/4

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given quadratic equations are

\rm :\longmapsto\: {x}^{2} - 11x + k = 0 -  - (1)

and

\rm :\longmapsto\: {x}^{2} - 14x + 2k = 0 -  -  - (2)

Let assume that 'y' be the common root.

Thus,

y must satisfy equation (1) and equation (2),

\rm :\longmapsto\: {y}^{2} - 11y + k = 0 -  - (3)

and

\rm :\longmapsto\: {y}^{2} - 14y + 2k = 0 -  -  - (4)

Now,

Subtracting equation (4) from equation (3), we get

3y - k = 0

\bf\implies \: y= \dfrac{k}{3}  -  -  - (5)

Now

Substituting the value of y in equation (3), we get

\rm :\longmapsto\: {\bigg(\dfrac{k}{3} \bigg) }^{2} - 11\bigg(\dfrac{k}{3} \bigg)  + k = 0 -  - (3)

\rm :\longmapsto\:\dfrac{ {k}^{2} }{9}  - \dfrac{11k}{3}  + k = 0

\rm :\longmapsto\:\dfrac{ {k}^{2}  - 33k + 9k}{9}  = 0

\rm :\longmapsto\:\dfrac{ {k}^{2}  -24k}{9}  = 0

\rm :\longmapsto\:k(k - 24) = 0

\bf\implies \:k = 0 \:  \:  \:  \: or \:  \:  \:  \: 24

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Hence-\begin{cases} &\bf{k = 0} \\ &\bf{k = 24} \end{cases}\end{gathered}\end{gathered}

Justification :-

Case :- 1

When k = 0,

The two equations reduces to

\rm :\longmapsto\: {x}^{2} - 11x = 0

\rm :\longmapsto\: {x}(x - 11) = 0

\bf\implies \:x = 0 \:  \: or \:  \: 11

and

\rm :\longmapsto\: {x}^{2} - 14x = 0

\rm :\longmapsto\:x(x - 14) = 0

\bf\implies \:x = 0 \:  \: or \:  \: 14

Hence,

 \red{ \boxed{ \sf{ \: 0 \: is \: the \: common \: root}}}

Case :- 2

When k = 24

The two equations reduces to

\rm :\longmapsto\: {x}^{2} - 11x + 24 = 0

\rm :\longmapsto\:(x - 8)(x - 3) = 0

\bf\implies \:x = 8 \:  \: or \:  \: 3

and

\rm :\longmapsto\: {x}^{2} - 14x + 48 = 0

\rm :\longmapsto\:(x - 8)(x - 6) = 0

\bf\implies \:x = 8 \:  \: or \:  \: 6

Hence,

 \red{ \boxed{ \sf{ \: 8 \: is \: the \: common \: root}}}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions