Math, asked by rajlaxmichoudhary148, 6 months ago

25) If tan(A + B) = v3 and tan(A - B) = 1/√3,0°< A+B S 90° find A and B.​

Answers

Answered by SujalSirimilla
13

\boxed{\bold{\large{GIVEN:}}}

  • \to \sf tan(A+B) = \sqrt{3}
  • \sf \to tan(A-B)=\dfrac{1}{\sqrt{3} }

\boxed{\bold{\large{TO \:\: FIND:}}}

  • \sf A=?, B=?.

\boxed{\bold{\large{SOLUTION:}}}

Simplify the given statements.

\to \sf tan(A+B) = \sqrt{3}

We know tanθ=√3 only when θ=60°

Here, tan(A+B) = √3. Thus, A+B=60°_____(1)

Similarly,

\sf \to tan(A-B)=\dfrac{1}{\sqrt{3} }

Here, tanθ=1/√3 only when θ=30°

Here, tan(A-B) = 1/√3. Thus, A-B=30°_____(1)

Add (1) and (2).

\to \sf A+B = 60 ^{ o}\\\sf \to A-B=30^{o} \\----------\\2A=90^o

\boxed{\sf{\blue{A=45^o}}}

Similarly, subtract (1) and (2).

\sf  A+B = 60 ^{ o}\\ \sf A-B=30^{o} \\ ----------\\2B=30^o

\boxed{\sf{\blue{B=15^o}}}

∴A=45°, B=15°.

Similar questions