Math, asked by charuyadavv13, 4 months ago

25. If tan’e (cosec 0 - 1) (cosec 0 + 1) = k, find the value of k.

Attachments:

Answers

Answered by anindyaadhikari13
30

Required Answer:-

Given:

  • tan²θ(cosec θ - 1)(cosec θ + 1) = k

To Find:

  • The value of k.

Solution:

Given,

→ tan²θ(cosec θ - 1)(cosec θ + 1) = k

Using identity (a + b)(a - b) = a² - b², we get,

→ tan²θ × (cosec²θ - 1) = k

We know that,

→ cosec²θ - cot²θ = 1

→ cosec²θ - 1 = cot²θ

Substituting the value in the equation, we get,

→ tan²θ × cot²θ = k

As tan θ is the reverse of cot θ i.e.,

→ tan θ = 1/cot θ

→ 1/cot²θ × cot²θ = k

→ 1 = k

→ k = 1

→ So, the value of k is 1.

Answer:

  • k = 1

Additional Formulae:

1. Relationship between sides and T-Ratios.

  • sin θ = Height/Hypotenuse.
  • cos θ = Base/Hypotenuse.
  • tan θ = Height/Base.
  • cot θ = Base/Height.
  • sec θ = Hypotenuse/Base.
  • cosec θ = Hypotenuse/Height.

2. Reciprocal Identities.

  • sin θ = 1/cosec θ and cosec θ = 1/sin θ
  • cos θ = 1/sec θ and sec θ = 1/cot θ
  • tan θ = 1/cot θ and cot θ = 1/tan θ

3. Co-function identities.

  • sin(90° - θ) = cos θ and cos(90° - θ) = sin θ.
  • tan(90° - θ) = cot θ and cot(90° - θ) = tan θ.
  • sec(90° - θ) = cosec θ and cosec(90° - θ) = sec θ

4. Pythagoras identities.

  • sin²θ + cos²θ = 1
  • cosec²θ - cot²θ = 1
  • sec²θ - tan²θ = 1
Answered by Ataraxia
141

Given :-

 \sf  {tan}^{2}  \theta(cosec \theta - 1)(cosec \theta + 1) = k

To Find :-

Value of k.

Solution :-

: \implies \sf  {tan}^{2}  \theta(cosec \theta - 1)(cosec \theta + 1) = k

: \implies \sf  {tan}^{2}  \theta \times(  {cosec}^{2}  \theta -  {1}^{2} ) = k

   \bf\dag  \: tan \theta =  \dfrac{sin \theta}{cos \theta}

  \bf\dag  \: cosec \theta =  \dfrac{1}{sin \theta}

 : \implies \sf  \dfrac{ {sin}^{2}  \theta}{ {cos}^{2} \theta}  \times  \left( \dfrac{1}{ {sin}^{2}   \theta}  - 1\right) = k

 : \implies \sf  \dfrac{ {sin}^{2}  \theta}{ {cos}^{2}  \theta} \times  \dfrac{1 -  {sin}^{2}  \theta}{ {sin}^{2}  \theta} = k

 \bf \dag \:  1 -  {sin}^{2} \theta =  {cos}^{2}  \theta

: \implies \sf  \dfrac{ {sin}^{2} \theta}{ {cos}^{2}  \theta} \times  \dfrac{ {cos}^{2}  \theta}{ {sin}^{2}  \theta} = k

 : \implies \sf 1 = k

 \underline{ \bf \: k = 1}

Similar questions