Math, asked by kalshifa50, 8 months ago

25. Ifa^p=b^q=c^r and b^2=ac the value of q(p+r)/pr is given by
(a) 1
(b) -1
(c) 2​

Answers

Answered by pulakmath007
52

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 {a}^{p}  =  {b}^{q}  =  {c}^{r}  \:  \: and \:  \:  \:  {b}^{2}  = ac

TO DETERMINE

 \displaystyle \:  \frac{q(p + r)}{pr}

EVALUATION

 {a}^{p}  =  {b}^{q}  =  {c}^{r}   = k(say)

  \displaystyle \: \implies \: a  =  {k}^{ \frac{1}{p} }  \: , \: b  =  {k}^{ \frac{1}{q} }  \:  , \: \: c  =  {k}^{ \frac{1}{r} }

Now

{b}^{2}  = ac

\displaystyle \implies \:   \: \  { \bigg({k}^{ \frac{1}{q}  }\bigg)}^{2} = {k}^{ \frac{1}{p} } \times  \:  {k}^{ \frac{1}{r} }

  \displaystyle \: \implies \:   \: \  {k}^{ \frac{2}{q}  } = {k}^{ \: ( \frac{1}{p} +  { \frac{1}{r} }) }

  \displaystyle \: \implies \:   \: \  { \frac{2}{q}  } = { \: \frac{1}{p} +  { \frac{1}{r} } }

  \displaystyle \: \implies \:   \: \  { \frac{2}{q}  } = { \: \frac{p + r}{pr} }

  \implies \: \displaystyle \:  \frac{q(p + r)}{pr}  = 2

RESULT

 \sf{THE \:  REQUIRED \:  ANSWER \:  IS  \:  = 2 \: }

Similar questions