Math, asked by tanvirrizvi, 9 months ago

25 metre long ladder is placed against a vertical wall such that the foot of the ladder is 7 metre from the feet of the wall if the top of the ladder slides down by 4 metre by how much distance will the foot of the ladder slide​

Answers

Answered by BrainlyConqueror0901
56

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Foot\:slided\:distance=8\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

  \green{\underline \bold{Given :}} \\   : \implies   \text{Length \: of \: ladder = 25 \: m} \\ \\  :   \implies  \text{Distance \: between \: foot \: of \: ladder \: and \: wall = 7m} \\  \\   : \implies  \text{Distance \: of \: sliding \: the \: ladder \: from \: top = 4 \: m} \\  \\ \red{\underline \bold{To \: Find:}} \\  :  \implies  \text{Distance \: of \: sliding \: of \: bottom \: of \: ladder = ?}

• Accroding to given question :

 \bold{In  \: \triangle \: ABC} \\   : \implies   {h}^{2}   =  {p}^{2}  +  {b}^{2}  \:  \:  \:   \:  \:  \:  \:  \: \text{(by \: phythagoras \: theoram}) \\  \\  :  \implies  {25}^{2}  =  {AB}^{2}  +  {7}^{2}  \\  \\  :  \implies 625 =  {AB}^{2}  +  49 \\  \\  :  \implies 625 - 49 =  {AB}^{2}  \\  \\  :  \implies  {AB}^{2}  = 576 \\ \\     : \implies AB =  \sqrt{576}  \\  \\  \green{: \implies  \text{AB =  24 \: m}} \\  \\    \bold{Slided \: height \: from \:  top \: of \: ladder}\\ : \implies Final \: height = 24 - 4 \\  \\   : \implies \text{Final \: height =20 \: m} \\  \\  \bold{In \:  \triangle \: DAE} \\   : \implies   {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\   : \implies   {25}^{2}   =  {20}^{2}  +  {AE}^{2}  \\  \\   : \implies  {AE }^{2}  = 625 - 400 \\  \\ : \implies  {AE }^{2}  =225 \\  \\ : \implies  {AE } = \sqrt{225}  \\  \\  \green{: \implies   \text{{AE }=15 \: m}} \\  \\    \green{\therefore  \text{Distance \: of \: foot \: of \: ladder \: slide = 15 - 7 = 8 \: m}}

Attachments:
Answered by Anonymous
29

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

\small{\underline{\blue{\sf{Given :}}}}

  • Length of Ledder = 25 m
  • Distance between ledder foot and wall = 7 m
  • Sliding Distance of ladder = 4 m

\rule{200}{1}

\small{\underline{\green{\sf{Solution :}}}}

Use Pythagoras Theorem :

\small \bigstar {\boxed{\sf{(Hypotenuse)^2 \: = \: (Base)^2 \: + \: (Perpendicular)^2}}} \\ \\ \implies {\sf{(25)^2 \: = \: (7)^2 \: + \: P^2}} \\ \\ \implies {\sf{625 \:  = \:  49 \: + \: P^2}} \\ \\ \implies {\sf{P^2 \: = \: 625 \: - \: 49}} \\ \\ \implies {\sf{P^2 \: = \: 576}} \\ \\ \implies {\sf{P \: = \: \sqrt{575}}} \\ \\ \implies {\boxed {\sf{Perpendicular \: = \: 24 \: m}}}

\rule{200}{2}

Height After Sliding :

⇒Height (Sliding) = 24 - 4

⇒Height = 20 m

\rule{100}{0.5}

Again use Pythagoras Theorem :

\implies {\sf{(25)^2 \: = \: (20)^2 \: + \: (B)^2}} \\ \\ \implies {\sf{625 \: = \: 400 \: + \: B^2}} \\ \\ \implies {\sf{B^2 \: = \: 625 \: - \: 400}} \\ \\ \implies {\sf{B^2 \: = \: 225}} \\ \\ \implies {\sf{B \: = \: \sqrt{225}}} \\ \\ \implies {\sf{B \: = \: 15}} \\ \\ \implies {\boxed{\sf{Base \: = \: 15 \: m}}}

____________________________

Distance = 15 - 7 = 8 m

Similar questions