25^n-1+100=5^(2n-1) please solve this questions quickly
Answers
Answered by
2
Step-by-step explanation:
Given:-
25^n-1+100=5^(2n-1)
To find:-
Find the value of n ?
Solution:-
Given equation is 25^n-1+100=5^(2n-1)
It can be written as (5^2)^(n-1) +100 = 5^(2n-1)
We know that
(a^m)^n = a^(mn)
=>5^2(n-1) +100 = 5^(2n-1)
=>5^(2n-2) +100 = 5^(2n-1)
We know that a^m/a^n =a^(m-n)
=>(5^2n /5^2 )+100 = 5^2n/5^1
=>(5^2n /25) + 100 = 5^2n /5
=>(5^2n /25) -(5^2n /5) = -100
=>5^2n [(1/25)-(1/5)]= -100
=>5^2n[ (1-5)/25] = -100
=>5^2n (-4/25) = -100
=>5^2n = -100×(25/-4)
=>5^2n =100×25/4
=>5^2n = 25×25
=>5^2n = 625
=>5^2n = 5^4
On comparing both sides then
=>2n = 4
=>n = 4/2
=>n = 2
Answer:-
The value of n for the given problem is 2
Check:-
If n=2 then
LHS:-
25^n-1+100
=>25^(2-1)+100
=>25+100
=>125
RHS:-
5^(2n-1)
=>5^(2×2-1)
=>5^(4-1)
=>5^3
=>5×5×5
=>125
LHS = RHS is true for n =2
Used formulae:-
- (a^m)^n = a^(mn)
- a^m/a^n =a^(m-n)
Similar questions
Math,
1 month ago
English,
3 months ago
Math,
3 months ago
Social Sciences,
10 months ago
Chemistry,
10 months ago