Math, asked by Ajey64, 1 year ago

25^n × 5 × 5^n - 125^n / 125^m × 2^2 = 1/125
SOLVE IT PLEASE


Vishwaratna: send the picture of the question please. i think written question is not as the exact one

Answers

Answered by Agastya0606
16

Given: The term (25^n × 5 × 5^n - 125^n) / (125^m × 2^2) = 1/125

To find: Find the relation between m and n.

Solution:

  • Now we have given:

                 (25^n × 5 × 5^n - 125^n) / (125^m × 2^2) = 1/125

  • We can rewrite it as:

                 ((5^2)^n × 5^(n+1) - (5^3)^n) / ((5^3)^m × 4) = 1/5^3

                 (5^2n × 5^(n+1) - 5^3n) / (5^3m × 4) = 5^-3

                 (5^3n × 5 - 5^3n) / (5^3m × 4) = 5^-3

                 (5^3n × (5 - 1) ) / (5^3m × 4) = 5^-3

                 (5^3n × 4 ) / (5^3m × 4) = 5^-3

                 (5^3n / 5^3m) = 5^-3

                 (5^(3n-3m)) = 5^-3

  • As now the base is same, i.e. 5, so equating the powers, we get:

                 3n-3m = -3

                 3m - 3n = 3

                 m - n = 1

Answer:

             So the relation between m and n is m-n = 1.

Answered by brainlyvirat187006
6

Answer:

Given: The term (25^n × 5 × 5^n - 125^n) / (125^m × 2^2) = 1/125

To find: Find the relation between m and n.

Solution:

Now we have given:

                 (25^n × 5 × 5^n - 125^n) / (125^m × 2^2) = 1/125

We can rewrite it as:

                 ((5^2)^n × 5^(n+1) - (5^3)^n) / ((5^3)^m × 4) = 1/5^3

                 (5^2n × 5^(n+1) - 5^3n) / (5^3m × 4) = 5^-3

                 (5^3n × 5 - 5^3n) / (5^3m × 4) = 5^-3

                 (5^3n × (5 - 1) ) / (5^3m × 4) = 5^-3

                 (5^3n × 4 ) / (5^3m × 4) = 5^-3

                 (5^3n / 5^3m) = 5^-3

                 (5^(3n-3m)) = 5^-3

As now the base is same, i.e. 5, so equating the powers, we get:

                 3n-3m = -3

                 3m - 3n = 3

                 m - n = 1

Answer:

             So the relation between m and n is m-n = 1.

꧁༒BRAINLYVIRAT187006༒꧂

brainlyvirat187006 • Ambitious

Similar questions