Math, asked by avishkarjaiswal, 10 months ago

25. Point P(x, 4) lies on the line segment joining the points A-5, 8) and
B(4, -10). Find the ratio in which point P divides the line segment AB.
Also find the value of x.
na? RA - 100 AH als Fargus Peta​

Answers

Answered by MaheswariS
5

\textbf{Given points are}

\text{A(-5,8) and B(4,-10)}

\text{since A,P and B are collinear, we have}

\text{Slope of AP=Slope of BP}

\frac{8-4}{-5-x}=\frac{4+10}{x-4}

\frac{4}{-5-x}=\frac{14}{x-4}

\frac{2}{-5-x}=\frac{7}{x-4}

2x-8=-35-7x

9x=-27

\implies\boxed{\bf\;x=-3}

\therefore\text{Point P is (-3,4)}

\text{Let the point P divides the line segment joining A and B in the ratio m:n}

\text{Then, the coordinates of P is given by}

(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})

(\frac{4m-5n}{m+n},\frac{-10m+8n}{m+n})

\text{But,}(\frac{4m-5n}{m+n},\frac{-10m+8n}{m+n})=(-3,4)

\implies\frac{4m-5n}{m+n}=-3\;\frac{-10m+8n}{m+n}=4

\implies\;7m=2n\;\text{and}\;-14m=-4n

\implies\frac{m}{n}=\fra{2}{7}

\implies\boxed{\bf\;m:n=2:7}

Answered by Anonymous
2

Answer:

I hope this helps u

please mark me as brainlist

Attachments:
Similar questions