Math, asked by suchetatiwari450, 1 month ago

(25) power -3/2 -5 power-3.



Can you solve this one​

Attachments:

Answers

Answered by anindyaadhikari13
4

\textsf{\large{\underline{Solution}:}}

We have to evaluate the given expression.

 \rm =  {7}^{0} \times  {(25)}^{^{ -3}/_{2}}  -  {5}^{ - 3}

We know that:

 \rm: \longmapsto {x}^{0}  = 1,x \neq0

Therefore, we get:

 \rm = 1 \times  {(25)}^{^{ -3}/_{2}}  -  {5}^{ - 3}

 \rm = {(25)}^{^{ -3}/_{2}}  -  {5}^{ - 3}

 \rm = {( {5}^{2} )}^{^{ -3}/_{2}}  -  {5}^{ - 3}

 \rm = {5}^{2 \times ^{ -3}/_{2}}  -  {5}^{ - 3}

 \rm = {5}^{ - 3}  -  {5}^{ - 3}

 \rm = 0

★ Hence, the required answer is 0.

\textsf{\large{\underline{Learn More}:}}

Laws Of Exponents: If a, b are positive real numbers and m, n are rational numbers, then the following results hold.

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1


anindyaadhikari13: Thanks for the Brainliest :)
Similar questions