Math, asked by mudhojisSai, 1 year ago

25. Solution of |2x - 3|<|x + 2| is​

Answers

Answered by konrad509
1

|2x - 3|&lt;|x + 2| \\\\1.\ x\in(-\infty,-2\rangle\\-2x+3&lt;-x-2\\x&gt;5\\\\x&gt;5\wedge x\in(-\infty,-2\rangle\\\underline{x\in\emptyset}\\\\2.\ x\in\left(-2,\dfrac{3}{2}\right\rangle\\-2x+3&lt;x+2\\3x&gt;1\\x&gt;\dfrac{1}{3}\\\\x&gt;\dfrac{1}{3}\wedge x\in\left(-2,\dfrac{3}{2}\right\rangle\\\underline{x\in \left(\dfrac{1}{3},\dfrac{3}{2}\right\rangle}\\\\\\3.\ x\in\left(\dfrac{3}{2},\infty\right)\\2x-3&lt;x+2\\x&lt;5\\\\x&lt;5 \wedge x\in\left(\dfrac{3}{2},\infty\right)\\\underline{x\in\left(\dfrac{3}{2},5\right)}

x\in\emptyset \wedge x\in \left(\dfrac{1}{3},\dfrac{3}{2}\right\rangle} \wedge x\in\left(\dfrac{3}{2},5\right)\\\boxed{x\in\left(\dfrac{1}{3},5\right)}

Similar questions