Math, asked by Anonymous, 10 months ago

(25*t^-4)/(5^3*10*t^-8) ​

Answers

Answered by mysticd
4

 Given \: \frac{(25\times t^{-4})}{(5^{3} \times 10 \times t^{-8})}

=\frac{5^{2} t^{-4+8}}{5^{3}\times 2\times 5 }

 \boxed{\pink{ Since, \frac{a^m}{a^n} = \frac{1}{a^{n-m}} }}

= \frac{t^{4}}{5^{3+1-2}\times 2 }

= \frac{t^{4}}{5^{2} \times 2 }

= \frac{t^{4}}{50}

Therefore.,

 \red{Value \:of \: \frac{(25\times t^{-4})}{(5^{3} \times 10 \times t^{-8})}}

 \green {=\frac{t^{4}}{50}}

•••♪

Answered by Anonymous
3

{lgathered}Given \: [tex]\frac{(25\times t^{-4})}{(5^{3} \times 10 \times t^{-8})}\\=\frac{5^{2} t^{-4+8}}{5^{3}\times 2\times 5 }\\= \frac{t^{4}{5^{3+1-2}\times 2 }\\= [tex]\frac{t^{4}}{5^{2} \times 2 }\\=\frac{t^{4}}{50}\end{lgathered}

Therefore.,

\red{Value \:of \: \frac{(25\times t^{-4})}{(5^{3} \times 10 \times t^{-8})}}\green {=\frac{t^{4}}{50}}

Similar questions