Math, asked by jeetishasingh, 2 months ago

25. The sum of squares of two numbers is 145. If square root of one number is 3
then find the other number

Answers

Answered by Anonymous
25

Let the two numbers be x , y and Sum of squares of two numbers is 145 so as :-

 \\ {\pmb{\sf{ x^2+y^2 = 145 \ \ \ \ \ \ \ \ \cdots(1) }}}

Now, we've Square root of {\sf{ 1^{st} }} number that is  {\sf{ 3 }} : We can Square both sides to make it Easier to use as:-

 \colon\mapsto{\sf{ ( \sqrt{x} ) = 3 }} \\ \\ \colon\mapsto{\sf{ ( \sqrt{x} )^2 = 3^2 }} \\ \\ \colon\mapsto{\sf{ x = 9 }} \\

So, {\sf{ 1^{st} }} number is 9

From Equation (1), we can find the value of {\sf{ 2^{nd} }} number as:-

 \colon\mapsto{\pmb{\sf{ x^2+y^2 = 145 }}} \\ \\ \colon\mapsto{\sf{ (9)^2 + y^2 = 145 }} \\ \\ \colon\mapsto{\sf{ 81 + y^2 = 145 }} \\ \\ \colon\mapsto{\sf{ y^2 = 145 - 81 }} \\ \\ \colon\mapsto{\sf{ y^2 = 64 }} \\ \\ \colon\mapsto{\sf{ y = \sqrt{64} \mapsto 8 }} \\

Hence, {\sf{ 2^{nd} }} number will be 8.

Similar questions