Physics, asked by dadaadhav884, 2 months ago

25. Two vectors of magnitudes 4 and 6 are acting
through a point. If the
magnitude of the
resultant is R​

Answers

Answered by Anonymous
9

Topic :- Vectors

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\maltese\:\underline{\textsf{\textbf{Complete Question :}}}\:\maltese \\

Two vectors of magnitude 4 & 6 and are acting through a point. If the magnitude of the resultant is R , then

A) 4 < R < 6

B) 4 < R < 10

C) 2 ≤ R ≤ 10

D) 2 ≥ R ≥ 10

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\maltese\:\underline{\textsf{\textbf{AnsWer :}}}\:\maltese \\

  • Two vectors of magnitudes 4 and 6 are acting through a points.

  • Let the magnitude of the two vectors be as :

\footnotesize \bullet  \: \displaystyle \:\sf|\overrightarrow{A}|= 6 \: units \\

\footnotesize \bullet  \: \displaystyle \:\sf|\overrightarrow{B}|= 4\: units \\

\tiny\dag\:\underline{\sf For \:  (\theta) = 0^{\circ} , Parallel \:  vectors : } \\

\longrightarrow\:\:\sf R =\sqrt{A^2+B^2+2AB\cos(\theta)} \\

\longrightarrow\:\:\sf R =\sqrt{A^2+B^2+2AB\cos( {0}^{ \circ} )} \\

\longrightarrow\:\:\sf R =\sqrt{A^2+B^2+2AB} \\

\longrightarrow\:\:\sf R =\sqrt{(A+B)^2} \\

\longrightarrow\:\:\sf R =A+B \\

\longrightarrow\:\:\sf R =6+4 \\

\longrightarrow\:\: \underline{ \underline{\sf R =10 \: units}}\\

  • Here,the Resultant R is maximum.

\tiny\dag\:\underline{\sf For \:  (\theta) = 180^{\circ} ,Anti-Parallel \:  vectors : } \\

\longrightarrow\:\:\sf R =\sqrt{A^2+B^2+2AB\cos(\theta)} \\

\longrightarrow\:\:\sf R =\sqrt{A^2+B^2+2AB\cos( {180}^{ \circ} )} \\

\longrightarrow\:\:\sf R =\sqrt{A^2+B^2+2AB \times  - 1 } \\

\longrightarrow\:\:\sf R =\sqrt{A^2+B^2 - 2AB  } \\

\longrightarrow\:\:\sf R =\sqrt{(A -  B)^2   } \\

\longrightarrow\:\:\sf R =A -  B \\

\longrightarrow\:\:\sf R =6 -  4 \\

\longrightarrow\:\:  \underline{\underline{\sf R =2  \: units}}\\

  • Here,the Resultant R is minimum.

Hence,the magnitude of Resultant for angle 'θ' is :

\longrightarrow\:\:\sf  | A - B |  \leqslant  R   \leqslant A + B \\

\longrightarrow\:\: \underline{ \boxed{\sf  2 \leqslant  R   \leqslant 10}}\\

Hence, option (C) is the correct option.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Similar questions