Math, asked by anishkabansal, 2 months ago

2⁵ x 2‐⁸ x 2⁶. simplify using laws of exponents and write in exponential form ​

Answers

Answered by 8530gurmang8e
1

Answer:

2^(5-8+6)

2^3

8

MARK AS BRAINLIEST

Answered by BrainlySparrow
89

Answer:

Step-by-step explanation:

\huge\sf\blue{Question:} \:

2⁵ x 2‐⁸ x 2⁶. Simplify using laws of exponents and write in exponential form .

\huge\sf\blue{Solution:} \:

 \displaystyle{ \implies \:  {2}^{5} \times  {2}^{ - 8}   \times  {2}^{6} }

As we know that,

\sf{ {a}^{m}  \times  {a}^{n}  =  {a}^{m + n} }

 \displaystyle{ \implies \:  {2}^{5 + ( - 8)} \times {2}^{6} } \:

 \displaystyle{ \implies \:  {2}^{5 - 8} \times  {2}^{6} } \:

 \displaystyle{ \implies \:  {2}^{ - 3} \times \: {2}^{6} } \:

 \displaystyle{ \implies \:  {2}^{( - 3) + 6} } \:

 \displaystyle{ \implies \:  {2}^{3} }

 \displaystyle{ \implies \: 2 \times 2 \times 2 } \:

 \displaystyle{ \implies \: 8} \:

As in the question it is asked only in exponential form so answer is 2³.

∴ The answer is 2³.

\huge\sf\blue{More  \: Information :} \:

\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}

Similar questions