Math, asked by Mr1unknown, 11 months ago

25^x=5^y-1 and [32]^y=4*8^x solve for X and y

Answers

Answered by Anonymous
35

HEYA \:  \\  \\ 25 {}^{x}  = 5 {}^{(y - 1)}  \\ and \\ (32) {}^{y}  = 4 \times 8 {}^{x}  \\  \\ 5 {}^{2x}  = 5 {}^{(y - 1)}  \\  compare \: powers \: of \: 5 \: we \: have \\  \\ 2x = y - 1 \\  \\ 2x + 1 = y \:  \: ...Equation \:  \:  \: (i) \\  \\ (8 \times 4) {}^{y}  = 4 \times 8 {}^{x}  \\  \\ 8 {}^{(y - x)}  = 4 {}^{(1 - y)}  \\  \\ 2 {}^{3(y - x)}  = 2 {}^{2(1 - y)}  \\  \\ compare \: powers \: of \: 2 \: we \: have \:  \\  \\ 3 y - 3x = 2 - 2y \\  \\ 5y - 3x = 2 \: ...Equation \:  \: ...(ii) \\  \\ substitute \: value \: of \: y \: in \: equation \: ii \: we \: have \:  \\  \\ 5(2x + 1) - 3x = 2 \\  \\ 7x =  - 3 \\  \\ x =  - 3 \div 7 \\  \\ and \:  \\  \\ y = 1 \div 7

Answered by bedantanandi
14

Answer:

Step-by-step explanation:

   25^x = 5^y-1

=> 5^2x = 5^y-1

Therefore, 2x=y-1

             => x=(y-1)/2

   32^y= 4*8^x

=> 2^5y=2^(3x+2)

Therefore, 5y=3x+2=3(y-1)/2 + 2 (substitution)=(3y-3+4)/2=(3y+1)/2

              => 10y = 3y + 1

              => y=1/7

x=(y-1)/2 = -6/14 = -3/7

Similar questions