Math, asked by meenakshipremsundar, 3 months ago

25costheta=7
find tantheta+cottheta​

Answers

Answered by Aryan0123
7

Let ∠ACB be θ

\\

Given:

  • 25 cosθ = 7

\\

To find:

tanθ + cotθ = ?

\\

Solution:

\sf{\Rightarrow \: \dfrac{Adjacent \: side}{Hypotenuse}=\dfrac{7}{25}}\\\\

So,

  • Adjacent Side = BC = 7
  • Hypotenuse = AC = 25

\\

By Pythagoras theorem,

(Adjacent Side)² + (Opposite side)² = (Hypotenuse)²

  (BC)² + (AB)² = (AC)²

⇒ 7² + (AB)² = (25)²

⇒ 49 + AB² = 625

⇒ AB² = 625 - 49

⇒ AB² = 576

⇒ AB = √576

AB = 24

\\

For finding tanθ + cotθ

\implies \sf{tan \theta + cot\theta =\dfrac{AB}{BC}+\dfrac{BC}{AB}}\\\\

\sf{\to \: tan \theta + cot \theta =\dfrac{24}{7}+\dfrac{7}{24}}\\\\

\to \: \sf{tan \theta + cot \theta = \dfrac{576+49}{168}}\\\\

\therefore \boxed{\bf{tan \theta+ cot\theta=\dfrac{625}{168}}}

Attachments:
Similar questions