Math, asked by Sm1807185, 6 months ago

25power(2x-1) +100=5power(2x-1)

Answers

Answered by Anonymous
11

 \bull \:  \:  \:  { \underline{\rm \bold{Given :}}}

  \mapsto \:  \:  \:  \: \sf {25}^{(2x - 1)}  + 100 =  {5}^{(2x - 1)}

 \bull \:  \:  \:  { \underline{\rm \bold{Solution \: :}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf {25}^{(2x - 1)}  + 100 =  {5}^{(2x - 1)}

 \implies \:  \sf {5}^{2(2x - 1)}   -  {5}^{(2x - 1)}  + 100 = 0

{ \sf \: let, \: {  {5}^{(2x - 1)}  = a}}

 \implies \:  \sf \: {a}^{2}  - a + 100 = 0

 \implies \sf a =  \frac{  - ( -1 ) ± \sqrt{ {( - 1)}^{2}  - 4 \times 1 \times 100} }{2 \times 1}  \\

 \therefore   \underline{\boxed{\sf \:  roots \: are \: imaginary }}

____________________________________________________

HOPE THIS IS HELPFUL...

Similar questions