Math, asked by alisha1577, 1 year ago

25th term of an arithmetic sequence is 140 and 27th term is 166 what is common difference and 35th term?

Answers

Answered by Panzer786
38
Heya !!



25th term = 140



a + 24d = 140


a = ( 140 - 24d )



And,



27th term = 166


a + 26d = 166


140 - 24d + 26d = 166



2d = 166 - 140


2d = 26



d = 26/2


d = 13.




Therefore,


a = 140 - 24d



=> 140 - 24 × 13


=> 140 - 312


=> -172


Common difference ( d ) = 13.


And,



First term ( a ) = -172



35th term = a + 34d



=> -172 + 34 × 13



=> -172 + 442


=> 270
Answered by silentlover45
15

\large\underline{Given:-}

  • 25th term of an Ap ⇢ 140
  • 26th term of that Ap ⇢ 166

\large\underline{To find:-}

  • find common different of an Ap ...?
  • find it's 15th term ...?

\large\underline{Solutions:-}

\: \: \: \: \: \therefore \: \: \: {a_n} \: \: = \: \: {a} \: + \: {(n \: - \: {1})} \: d

  • a ⇢ first term
  • d ⇢ common difference
  • n ⇢ number of term
  • an ⇢ last term

»★ We have

✰ 25th term of an Ap ⇢ 140

\: \: \: \: \: \leadsto \: \: {a} \: + \: {({25} \: - \: {1})} \: d \: \: = \: \: {140}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {24d} \: \: = \: \: {140} \: \: \: \: \: \: \: ....{(i)}.

✰ And, 27th term of that Ap ⇢ 166

\: \: \: \: \: \leadsto \: \: {a} \: + \: {({27} \: - \: {1})} \: d \: \: = \: \: {166}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {26d} \: \: = \: \: {166} \: \: \: \: \: \: \: ....{(ii)}.

Now, Subtracting Eq. {(i)} and Eq. {(i)}

 {a} \: + \: {26d} \: \: = \: \: {166} \\ {a} \: + \: {24d} \: \: = \: \: {140} \\ \underline{- \: \: \: \: \: \: \: \: \: \: \: - \: \: \: \: \: \: = \: \: \:  - \: \: \: \: \: \: \: } \\ \: \: \: \: \: \: \: \: \: \: \: {2d} \: \: \: \: \: = \: \: \: {26}

\: \: \: \: \:  \leadsto \: \: d \: \: = \: \: \frac{26}{2}

\: \: \: \: \:  \leadsto \: \: {13}

»★ Now, putting the value of d in Eq. (i)

\: \: \: \: \: \leadsto \: \: {a} \: + \: {24d} \: \: = \: \: {140}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {24} \: \times \: {13} \: \: = \: \: {140}

\: \: \: \: \: \leadsto \: \: {a} \: - \: {312} \: \: = \: \: {140}

\: \: \: \: \: \leadsto \: \: {a} \: \: = \: \: {140} \: - \: {312}

\: \: \: \: \: \leadsto \: \: {a} \: \: = \: \: {-172}

Therefore,

  • first term, a = -172
  • common difference, d = 13

✰ Let the 35th term be a + 34d

Then, by putting the value of a and d.

\: \: \: \: \: \leadsto \:\: {a_{35}} \: \: = \: \: {a} \: + \: {34d}

\: \: \: \: \: \leadsto \: \: {a_{35}} \: \: = \: \: {-172} \: + \: {34} \: \times \: {13}

\: \: \: \: \: \leadsto \:\: {a_{35}} \: \: = \: \: {-172} \: + \: {442}

\: \: \: \: \: \leadsto {a_{35}} \: \: = \: \: {270}

\: \: \: \: \: \: \: \: Hence,

\: \: \: \: \: \therefore {35th} \: \: term \: \: is \: \: {270}

______________________________________

______________________________________

Similar questions