Math, asked by chauhanaakanksha07, 11 months ago

25x2-9y2factorise using identities

Answers

Answered by Anonymous
1

\huge\purple {♡}\pink{ Answer }\purple {♡}\\

25 {x}^{2}  - 9 {y}^{2}

(5x) {}^{2}  -  {3y}^{2}

using identity

 {a}^{2}  -  {b}^{2}  = (a - b)(a + b)

(5x - 3y)(5x + 3y)

hope it helps you......

Answered by Anonymous
5

Answer:

 \bf\ answer \: (5x + 3y)(5x - 3y)

Step-by-step explanation:

\sf\  {2x}^{2}  -  {9y}^{2}  \\  \\  \sf\  \implies: {(5x)}^{2}  -  {(3y)}^{2}   \\  \\\sf\  \implies:(5x + 3y)(5x - 3y) \\  \\  \\  \\ \sf\  \bigstar {x}^{2} -  {y}^{2}  = (x + y)(x - y) \\  \\  \sf\  \bigstar {(x + y)}^{2}  =  {(x)}^{2} + 2xy +  {(y)}^{2}   \\  \\ \sf\  \bigstar {(x - y)}^{2} =  {(x)}^{2} - 2xy +  {(y)}^{2} \\  \\ \sf\  \bigstar {(x)}^{2} +  {(y)}^{2}  =  {(x - y)}^{2} + 2xy \\    \\  \sf\  \bigstar {(x + y + z)}^{2}   =  {(x)}^{2} +  {(y)}^{2} +  {(z)}^{2} + 2(xy + yz + zx) \\  \\  \sf\  \bigstar {(x + y)}^{3}   =  {x}^{3}  +  {y}^{3} + xy(x + y) \\  \\  \sf\  \bigstar {x}^{3}    -  {y}^{3}  = (x - y)( {x}^{2} + xy +  {y}^{2}   )

Similar questions