Math, asked by asthatripathi, 1 month ago

25xsquare +30x+7, find root by sridharacharya formula​

Answers

Answered by BrainlyArnab
2

Zeroes -

 \huge\frac{ - 3 -  \sqrt{2} }{5}  \& \frac{ - 3 +  \sqrt{2} }{5}

Step-by-step explanation:

25x² + 30x + 7

In the standard form of quadratic equation(ax² + bx + c), here -

  • a = 25
  • b = 30
  • c = 7

So,

Using Sridharacharya formula (commonly known as quadratic formula) -

 \frac{ - b± \sqrt{ {b}^{2} - 4 ac} }{2a}  \\  \\  (put \: the \: value \: of \: a.b.c) \\  \\  =  >  \frac{ - 30± \sqrt{ {30}^{2}  - 4(25)(7)} }{2(25)}  \\  \\  =  >  \frac{ - 30± \sqrt{900 - 700}} {50}  \\  \\   =  >  \frac{  - 30±  \sqrt{200} }{50}  \\   \\ =  \frac{ - 30± \sqrt{4 \times 25 \times 2} }{50}  \\  \\  =  >  \frac{ - 30± \sqrt{ {2}^{2} \times  {5}^{2}  \times 2 } }{50}  \\  \\  =  >  \frac{ - 30±2 \times 5 \sqrt{2} }{50}  \\  \\  =  >  \frac{ - 30±10 \sqrt{2} }{50}  \\  \\  =  >  \frac{ - 3± \sqrt{2} }{5}

Zero no. 1 -

 \frac{ - 3+  \sqrt{2} }{5}

zero no. 2 -

 \frac{ - 3-  \sqrt{2} }{5}

hope it helps.

Answered by MrImpeccable
30

ANSWER:

Given:

  • 25x^2 + 30x + 7

To Find:

  • Roots of the given polynomial.

Solution:

We are given that,

\implies 25x^2+30x+7

We know, using Quadratic Formula,

\implies x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

Here, a = 25, b = 30 and c = 7.

So,

\implies x=\dfrac{-(30)\pm\sqrt{(30)^2-4(25)(7)}}{2(25)}

\implies x=\dfrac{-30\pm\sqrt{900-700}}{50}

So,

\implies x=\dfrac{-30\pm\sqrt{200}}{50}

\implies x=\dfrac{-30\pm\sqrt{2\times10\times10}}{50}

So,

\implies x=\dfrac{-30\pm10\sqrt2}{50}

Taking 10 common,

\implies x=\dfrac{10\!\!\!/(-3\pm\sqrt2)}{50\!\!\!/}

So,

\implies\bf x=\dfrac{-3\pm\sqrt2}{5}

Therefore,

\implies\bf x=\dfrac{-3+\sqrt2}{5}\:\:\&\:\:\dfrac{-3-\sqrt2}{5}


BrainlyPhantom: Great answer!!
Similar questions