Math, asked by meenurani2424, 4 months ago

26. A cone of height 32 cm and radius 8 cm is made up of clay. A child reshapes it in form of a
sphere. Find the radius of the sphere.​

Answers

Answered by mathdude500
2

Given Question :-

  • A cone of height 32 cm and radius 8 cm is made up of clay. A child reshapes it in form of a sphere. Find the radius of the sphere.

___________________________________________

Answer

Given :-

  • A cone of height 32 cm and radius 8 cm.
  • Come reshapes in the form of a sphere.

To Find :

  • The radius of the sphere.

Formula used :-

{{ \boxed{\large{\bold\red{Volume_{(Cone)}\: = \: \dfrac{1}{3} \pi r^2 h }}}}}

where

  • r = radius of cone
  • h = height of cone

{{ \boxed{\large{\bold\red{Volume_{(Sphere)}\: = \: \dfrac{4}{3} \pi r^3}}}}}

where,

  • r = radius of sphere.

Solution :-

\begin{gathered}\Large{\bold{\purple{\underline{CaLcUlAtIoN\::}}}} \\ \end{gathered}

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{r  \: be  \: the \:  radius \:  of  \: cone} \\ &\sf{h  \: be \:  the  \: height  \: of  \: cone} \end{cases}\end{gathered}\end{gathered}

\bf \:\large \red{According  \: to \:  statement } ✍

\bf \:  ⟼Height \:  of  \: cone,  \: h = 32 \:  cm

\bf \:  ⟼ Radius \:  of  \: cone, r = 8  \: cm

{{ {{\bold\red{Volume_{(Cone)}\: = \:\dfrac{1}{3} \pi r^2 h }}}}}

{{ {{\bold{Volume_{(Cone)}\: = \dfrac{1}{3} \times \pi  \times (8)^2  \times 32 }}}}} \:\sf \:  ⟼(1)

\bf \:Let  \: Radius  \: of  \: sphere  \: be  \: R  \: cm

{{ {{\bold\red{Volume_{(Sphere)}\: = \:\dfrac{4 }{3} \pi R^3}}}}} \: \sf \:  ⟼(2)

⟼ Since, cone is reshapes in the form of sphere.

\bf\implies \:{\bold\red{Volume_{(Cone)}}} = \:{\bold\red{Volume_{(sphere)}}}

\bf\implies \:\dfrac{1}{3}  \times \pi \:  \times  {8}^{2} \times 32 =  \dfrac{4}{3} \times \pi \times  {R}^{3}

\bf\implies \: {R}^{3}  = 8 \times 8 \times 8

\bf\implies \: {R}^{3}  =  {8}^{3}

\bf\implies \:R = 8 \: cm

___________________________________________

\begin{gathered}\Large{\bold{\purple{\underline{More \:  InFoRmAtIoN\::}}}} \\ \end{gathered}

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length²+breadth²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions