Math, asked by vishal200444, 8 months ago

26. cos 2θ cos 2Φ + sin²(θ-Φ) - sin²(θ+ Φ) = cos(2θ + 2Φ).
prove this​

Answers

Answered by saounksh
6

ᴘʀᴏᴏғ

LHS

 = cos(2θ)cos(2Φ)+sin²(θ-Φ)-sin²(θ+ Φ)

 = cos(2θ)cos(2Φ)+

[sin(θ-Φ)+sin(θ+ Φ)][sin(θ-Φ) - sin(θ+ Φ)]

 = cos(2θ)cos(2Φ) +

[2sin(\frac{θ-Φ+θ+ Φ}{2})cos(\frac{θ-Φ-(θ+ Φ)}{2})]</p><p>[2cos(\frac{θ-Φ+θ+ Φ}{2})sin(\frac{θ-Φ-(θ+ Φ)}{2})]

 = cos(2θ)cos(2Φ) +

[2sin(θ)cos(-Φ)][2cos(θ)sin(-Φ)]

 = cos(2θ)cos(2Φ)+

[2sin(θ)cos(Φ)][-2cos(θ)sin(Φ)]

 = cos(2θ)cos(2Φ) -

[2sin(θ)cos(θ)][2sin(Φ)cos(Φ)]

 = cos(2θ)cos(2Φ)-sin(2θ)sin(2Φ)

 = cos(2θ+2Φ) = RHS

Hence Proved

Answered by iniyavan82
0

Step-by-step explanation:

What is a triangle ? Only mods should answer like theRyzen and Edweena

Similar questions