Math, asked by manyarawat46, 2 months ago

26. Determine the values of a, b, c for which the function
sin (a +1)x+ sinx, for x < 0
f(x)=
for x = 0 is continuous at x = 0.
C
√x + bx? – da
for x > 0
by 3/2​

Answers

Answered by amansharma264
19

EXPLANATION.

Let,

\implies f(x)= \dfrac{sin(a + 1)x + sinx}{x} \ \ \ , if \ x &lt; 0

\implies c \ , if \ x = 0

\implies \dfrac{\sqrt{x + bx^{2} }- \sqrt{x}  }{bx\sqrt{x} } \ \ \ if x &gt; 0

As we know that,

\implies f(x)= \dfrac{sin(a + 1)x + sinx}{x} \ \ \ , if \ x &lt; 0

\sf \implies \displaystyle  \lim_{x \to 0^{-} } f(x) =  \lim_{x \to 0} \dfrac{sin(a + 1)x + sin x}{x}

As we know that,

Formula of :

⇒ sin(A + B) = sin(A).cos(B) + cos(A).sin(B).

Using this formula in the equation, we get.

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{[sin(a).cos(1) + cos(a).sin(1)]x + sinx}{x}

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{sin(ax).cos(x) + cos(ax).sin(x) + sinx}{x}

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{sin(ax).cos(x)}{x} +  \displaystyle   \lim_{x \to 0} \dfrac{cos(ax) . sin(x)}{x} + \displaystyle   \lim_{x \to 0} \dfrac{sinx }{x}

As we know that,

Some standard expansions.

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{sin x}{x} = 1

\sf \implies \displaystyle   \lim_{x \to 0} cos x = 1

Using this expansions in the equation, we get.

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{sin(ax)}{x}  \times\displaystyle   \lim_{x \to 0} cos(x) +  \displaystyle   \lim_{x \to 0}\dfrac{sin x}{x}  \times \displaystyle   \lim_{x \to 0} cos(ax) + 1

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{sin(ax)}{ax} \times a \times 1 + 1 \times 1 + 1

\sf \implies \displaystyle  a + 2.

\sf \implies \displaystyle   \lim_{x \to 0^{+} } f(x) = \displaystyle   \lim_{x \to 0} \dfrac{\sqrt{x + bx^{2} } - \sqrt{x} }{bx\sqrt{x} }  \ \ if x &gt; 0

As we know that,

Put the value of x = 0 in the equation and check their indeterminant form, we get.

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{\sqrt{(0) + b(0)^{2} } - \sqrt{0} }{b(0)\sqrt{0} } = \dfrac{0}{0}

As we can see that it is in the form of 0/0 indeterminant form.

If roots can exists then rationalizes the equation, we get.

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{\sqrt{x + bx^{2} }- \sqrt{x}  }{bx\sqrt{x} }  \times  \dfrac{\sqrt{x + bx^{2} }  + \sqrt{x} }{\sqrt{x + bx^{2} } + \sqrt{x} }

As we know that,

Formula of :

⇒ (x² - y²) = (x + y)(x - y).

Using this formula in the equation, we get.

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{(\sqrt{x + bx^{2} } )^{2} - (\sqrt{x} )^{2} }{bx\sqrt{x} (\sqrt{x + bx^{2} } + \sqrt{x} )}

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{x + bx^{2}  - x}{bx\sqrt{x} (\sqrt{x + bx^{2} }  + \sqrt{x} )}

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{x^{2} }{x\sqrt{x} (\sqrt{x + bx^{2} } + \sqrt{x} )}

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{x}{\sqrt{x} (\sqrt{x + bx^{2} }  + \sqrt{x} )}

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{\sqrt{x} }{\sqrt{x + bx^{2} } + \sqrt{x}  }

Divide numerator and denominator by √x, we get.

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{\bigg(\dfrac{\sqrt{x} }{\sqrt{x} } \bigg)}{\bigg(\dfrac{\sqrt{x + bx^{2} } }{\sqrt{x} } + \dfrac{\sqrt{x} }{\sqrt{x} }\bigg) }

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{1}{\bigg(\dfrac{\sqrt{x + bx^{2} } }{\sqrt{x} } + 1 \bigg)}

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{1}{\sqrt{1 + bx} + 1}

Put the value of x = 0 in the equation, we get.

\sf \implies \displaystyle   \lim_{x \to 0} \dfrac{1}{\sqrt{1 + b(0)} + 1} = \dfrac{1}{2}

\sf \implies \displaystyle   f(0) = \lim_{x \to 0} = c = \dfrac{1}{2}

\sf \implies \displaystyle   a + 2 = \dfrac{1}{2}

\sf \implies \displaystyle   a = \dfrac{1}{2} - 2 = \dfrac{-3}{2}

⇒ b = x ∈ R - {0}.

Answered by nancy359
2

\boxed {\boxed{ { \green{ \bold{ \underline{Verified \: Answer \: }}}}}}

Attachments:
Similar questions