26. If (a² - 4a - 1) = 0 and a ≠ 0, find the values of : (а+1/a)
Answers
Answered by
0
Answer:
Your answer is 1 + root 5/2 + root 5
Answered by
5
Answer:
± 2√5
Step-by-step explanation:
→ a² - 4a - 1 = 0
→ a² - 1 = 4a
→ (a² - 1)/a = 4
→ (a²/a) - (1 /a) = 4
→ a - (1/a) = 4
Square on both sides:
→(a- 1/a)² = 4²
→ a² + (1/a)² - 2(a*1/a) = 16
→ a² + (1/a)² - 2 = 16
→ a² + (1/a)² = 18
Adding 2 to both sides:
→ a² + (1/a)² + 2 = 18 + 2
→ a² + (1/a)² + 2(x*1/x) = 20
→ (a + 1/a)² = 20
→ a + 1/a = ±√20 = ± √(4*5) = ±√(2² *5)
→ a+ (1/a) = ± 2√5
Similar questions