Math, asked by Anany007, 3 months ago

26. If in ∆ABC,
<B = 90° and tan C
1/2
then find the value of sin A ×cos C - Cos A ×sin C.​

Answers

Answered by piyushjoshi2242005
0

This is your required answer .Hope It will help you

Attachments:
Answered by Anonymous
3

Answer:

Step-by-step explanation:

given , ∆ABC, ∠ B = 90° and tan C = \frac{1}{2}

make a right angle triangle tan c = \frac{1}{2} = \frac{P}{B}

let AB (P) = 1K , BC (B) = 2K and AB = h

[ where P = perpendicular and B = base ]

by using pythagoras theorem

(AC)² = (BC)² + (AB)²

(h)² = (2K)² + (1K)²

      = 4K² + K²

      = 5 K²

      = \sqrt{5} K

sin C = \frac{1K}{\sqrt{5} K} = \frac{1}{\sqrt{5} }

cos C = \frac{2K}{\sqrt{5} K} = \frac{2}{\sqrt{5} }

sin A  = \frac{2K}{\sqrt{5}K } = \frac{2}{\sqrt{5} }

cos A = \frac{1K}{\sqrt{5} K} = \frac{1}{\sqrt{5} }

sin A × cos C - cos A × sin C

=\frac{2}{\sqrt{5} } × \frac{2}{\sqrt{5} } - \frac{1}{\sqrt{5} } × \frac{1}{\sqrt{5} }

=\frac{4}{5} -\frac{1}{5}

= \frac{4-1}{5}

= \frac{3}{5}

Similar questions