Math, asked by mickykumar80, 1 year ago

26) if xsq +1/xsq=27, find (x-1/x)​

Answers

Answered by jitekumar4201
1

Answer:

(x - \dfrac{1}{x}) = 5

Step-by-step explanation:

Given that-

x^{2} + \dfrac{1}{x^{2} } = 27

x - \dfrac{1}{x} = ?

Using formula-

(x-\dfrac{1}{x})^{2} = x^{2} + \dfrac{1}{x^{2} } - 2(x)(\dfrac{1}{x})

(x-\dfrac{1}{x})^{2} = 27 -2(1)

   = 27 - 2

(x-\dfrac{1}{x})^{2}=25

So, x - \dfrac{1}{x} = \sqrt{25}

Hence, (x - \dfrac{1}{x}) = 5

Similar questions