26. If z1 = a + ib and z2 = c + id, be any two
complex numbers. Then the sum z1 + Z2 be
(2 Points)
a + b
а+ С
(a + c) + i(b + d)
none of these
Answers
Answered by
1
Answer:
z
1
=a+ib∣z
1
∣=1
z
2
=c+id∣z
2
∣=1
Re(z
1
z
2
ˉ
)=0
z
1
=a+ib=cis(A)=cosA+isinA ..{∵∣z
1
∣=1}
z
2
=c+id=cis(B)=cosB+isinB ...{∵∣z
2
∣=1}
⟹a=cosA&b=sinA
Re(cis(A)cis(−B))=0
⟹cos(A−B)=0
⟹A−B=
2
π
⟹z
2
=cos(A−
2
π
)+isin(A−
2
π
)=sinA−icosA
⟹c=sinA&d=−cosA
w
1
=a+ic=cosA+isinA=cisA
w
2
=b+id=sinA−icosA=−i(isinA+cosA)=−icis(A)
⟹∣w
1
∣=1&∣w
2
∣=1
w
1
w
2
ˉ
=icisAcis(−A)=i
⟹Re(w
1
w
2
ˉ
)=0
Similar questions