Math, asked by hrkajalsharma037, 4 months ago

26. Rationalise the denominator 1/(sqrt 5 + sqrt 2)​

Answers

Answered by anurag2147
15

1/(√5 + √2)

1/(√5 + √2) × (√5-√2)/ (√5-√2)

(√5-√2)/ √5²-√2²

(√5-√2)/5-2

(√5-√2)/3

Answered by Abhijeet1589
12

The answer is

 \frac{ \sqrt{5}  -  \sqrt{2} }{3}

GIVEN

Mathematical expression

 \frac{1}{ \sqrt{5} +  \sqrt{2}  }

TO FIND

To rational the denominator of the fraction.

SOLUTION

We can simply solve the above problem as follows;

To rational the denominator we will multiply the conjugate of √5+√2 to both denominator and numerator;

  = \frac{1}{ \sqrt{5} +  \sqrt{2}  }  \times  \frac{ \sqrt{5} -  \sqrt{2}  }{\sqrt{5} -  \sqrt{2}  }

Applying, (a+b) (a-b) = a² - b² in the denominator;

 =  \frac{ \sqrt{5} -  \sqrt{2}  }{ { \sqrt{5} }^{2} -  { \sqrt{2} }^{2}  }

 =  \frac{ \sqrt{5}  -  \sqrt{2} }{5 - 2}

Therefore,

 =  \frac{ \sqrt{5}  -  \sqrt{2} }{3}

Hence, The answer is

 \frac{ \sqrt{5}  -  \sqrt{2} }{3}

#Spj2

Similar questions