Physics, asked by MrAnkit41, 4 months ago

26. Show how would you join three resistors, each of resistance 9 Ω so that equivalent resistance of the combination is (a) 3.5 Ω, (b) 6 Ω?

Need Full Explanation.​

Answers

Answered by Anonymous
11

\large\bold{\underline{\underline{Correct \:  Question:-}}}

Show how would you join three resistors, each of resistance 9 Ω so that equivalent resistance of the combination is (a) 13.5 Ω, (b) 6 Ω?

\blue{\bold{\underline{\underline{Answer:}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline{\bold{Given :}}} \\  \tt:   \implies Three \: resistors = 9\Omega \:  \: (each) \\  \\ \red{\underline{\bold{To \:Show:}}} \\ \tt:   \implies  R_{equivalent} = 3.5\Omega \\  \\ \tt:   \implies  R_{equivalent} = 6\Omega

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies   \frac{1}{R_{equivalent}} =  \frac{1}{R_{1} }  +  \frac{1}{ R_{2} } \\  \\  \tt:  \implies  R_{equivalent} =  \frac{ R_{1} R_{2} }{ R_{1} +  R_{2} }  \\  \\ \tt:  \implies  R_{equivalent} = \frac{9 \times 9}{9 + 9}  \\  \\ \tt:  \implies  R_{equivalent} = \frac{81}{18}  \\  \\ \tt:  \implies  R_{equivalent} =4.5\Omega \\  \\  \bold{Again : } \\ \tt:  \implies  R_{AB} =  R_{equivalent} +  R_{3} \\  \\ \tt:  \implies  R_{AB} =4.5 + 9\\\\ \green{\tt:  \implies  R_{AB} =13.5 \Omega}

\bold{For\:second\:part : } \\  \tt:  \implies  R_{equivalent} =  R_{1} +  R_{2} \\  \\ \tt:  \implies  R_{equivalent} =9 + 9 \\  \\ \tt:  \implies  R_{equivalent} =18\Omega \\  \\  \bold{Again : } \\  \tt: \implies  \frac{1}{ R_{AB}}  =  \frac{1}{ R_{equivalent} }  +  \frac{1}{ R_{3} }  \\  \\ \tt: \implies  \frac{1}{ R_{AB} }  =  \frac{1}{18}  +  \frac{1}{9}  \\  \\ \tt: \implies   R_{AB} =  \frac{18}{3}  \\  \\  \green{\tt: \implies   R_{AB} = 6\Omega }

Answered by pinkybansal1101
0

plz give multiple thanks to my maths best answer..I will inbox u I have the power..

@phenom

Similar questions