Math, asked by ritika16181, 9 months ago

26. Solve this question
Please give verified answer with step by step solution​

Attachments:

Answers

Answered by Sencredible
5

Answer: 10

Assume :

a = 1.5

b = 4.7

c = 3.8

It is in the form of:

(a³+b³+c³ - 3abc) / (a² + b² + c² - ab - bc - ac)

= [(a + b+ c)(a² + b² + c² -ab - bc - ac)] / (a² + b² + c² - ab - bc - ac)

= a + b + c

= 1.5 + 4.7 + 3.8

= 10

Thus, answer is 10.

Answered by tahseen619
4

10

Step-by-step explanation:

To find:

The value of,

\dfrac{ {(1.5)}^{3}  +  {(3.8)}^{3} +  {(4.8)}^{3}  - 3 \times 1.5 \times 4.7 \times 3.5}{ {(1.5)}^{2} + (4.7) {}^{2} +  {(3.8)}^{2}  - 1.5 \times 4.7 - 4.7 \times 3.8 - 1.5 \times 3.8  }

Solution:

We can solve it by using Formula,

a³ + b³ + c³ - 3abc

= (a+b+c)(a² +b² +c²-ab-bc-ac)

Let, a = 1.5, b = 3.8 and c = 4.8

Now,

 = \dfrac{ {(1.5)}^{3}  +  {(3.8)}^{3} +  {(4.7)}^{3}  - 3 \times 1.5 \times 4.7 \times 3.5}{ {(1.5)}^{2} + (4.7) {}^{2} +  {(3.8)}^{2}  - 1.5 \times 4.7 - 4.7 \times 3.8 - 1.5 \times 3.8  }  \\  \\ = \dfrac{ {(a)}^{3}  +  {(b)}^{3} +  {(c)}^{3}  - 3 \times a \times b \times c}{ {(a)}^{2} + (b) {}^{2} +  {(c)}^{2}  - a \times b - b \times c - a \times c  } \\  \\ =  \frac{(a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ac)}{( {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ac)}      \\  \\  =  \frac{(a  +  b + c) \cancel{( {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ac)}}{\cancel{( {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ac)}} \\  \\  =  (a + b + c) \\  \\  = 1.5 + 4.7 + 3.8 \\  \\  = 10.0 \\  \\  = 10

Therefore, the required answer is 10.

Similar questions