Math, asked by waybhatappasaheb, 23 days ago

26. What is the value of k, if the value of D, for the equations 3x+y=1 and 2x — ky=3 is 7? (A) 22 (B) – 22 (C) 11 (D) – 11​

Answers

Answered by varadad25
0

Answer:

The value of k is - 3.

Step-by-step-explanation:

The given linear equations are

3x + y = 1 - - - ( 1 )

2x - ky = 3 - - - ( 2 )

We have given that,

The value of determinant of coefficients of x and y ( D ) is 7.

We have to find the value of k.

Now,

3x + y = 1 - - - ( 1 )

Comparing with a₁x + b₁y = c, we get,

  • a₁ = 3
  • b₁ = 1

Now,

2x - ky = 3 - - - ( 2 )

Comparing with a₂x + b₂y = c, we get,

  • a₂ = 2
  • b₂ = - k

We know that,

The determinant of coefficients of variables of two linear equations is given by

D = \displaystyle{\huge{|}} a₁ \qquad b₁ \displaystyle{\huge{|}}

\quad \displaystyle{\huge{|}} a₂ \qquad b₂ \displaystyle{\huge{|}}

\displaystyle{\implies} 7 = \displaystyle{\huge{|}} 3 \qquad 1 \displaystyle{\huge{|}}

\qquad\qquad \displaystyle{\huge{|}} 2 \qquad - k \displaystyle{\huge{|}}

\displaystyle{\implies} 7 = [ 3 * ( - k ) ] - ( 1 * 2 )

\displaystyle{\implies} - 3k - 2 = 7

\displaystyle{\implies} - 3k = 7 + 2

\displaystyle{\implies} - 3k = 9

\displaystyle{\implies\sf\:k\:=\:-\:\cancel{\dfrac{9}{3}}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:k\:=\:-\:3\:}}}}

∴ The value of k is - 3.

Similar questions