Math, asked by riyakhan3028, 11 months ago

26 Z cube of 32 z square minus 18 / 13 z square of 4 Z - 3​

Answers

Answered by DRSujalDhawam
0

Answer:

Step-by-step explanation:

Answered by ashishks1912
0

The simplified expression to the given expression is \frac{26z^3(32z^2-18)}{13z(4z^2-3)}=4z(4z+3)

Step-by-step explanation:

Given expression is \frac{26z^3(32z^2-18)}{13z(4z^2-3)}

To simplify the given expression :

  • \frac{26z^3(32z^2-18)}{13z^2(4z-3)}
  • =\frac{2z^3.z^{-2}(32z^2-18)}{4z-3} ( by using the identity  \frac{1}{a^m}+a^{-m} )
  • =\frac{2z^{3-2}(32z^2-18)}{4z-3} ( by using the identity  a^m.a^{-n}=a^{m-n} )
  • =\frac{2z^1(32z^2-18)}{4z-3}
  • =\frac{2z(32z^2-18)}{4z-3}
  • =\frac{2z(2)(16z^2-9)}{4z-3}
  • =\frac{4z(16z^2-9)}{4z-3}
  • =\frac{4z(4^2z^2-3^2)}{4z-3}  
  • =\frac{4z((4z)^2-3^2)}{4z-3} ( by using the identity  a^m.b^m=(ab)^m )
  • =\frac{4z(4z-3)(4z+3)}{4z-3} ( by using the identity  (a^2-b^2)=(a+b)(a-b) )
  • =4z(4z+3) ( simplifying the terms )

Therefore the simplified expression is 4z(4z+3)

Therefore \frac{26z^3(32z^2-18)}{13z(4z^2-3)}=4z(4z+3)

Similar questions