Math, asked by Anonymous, 1 year ago

26th, 11th and last term of an ap are 0, 3 and -1/5 respectively . find the common difference and the number of terms

Answers

Answered by enggmonika
4

Given: 26 _{th}\\ term of AP series is = 0

           11_{th\\} term of AP series is =  3

          last term of AP series is = -1/5

Find: common difference and number of turns

solution:

as we know that to find n_{th}\\ term we use formula:

                     a_{n}\\ = a₁ + (n-1) d

                     a_{n}\\ = n^{th}\\ term

                     a₁ = first term

                     n = number of terms

                     d = common difference

Step 1:

equation for 11_{th\\} term:

              a_{11}\\ = a₁ + (11-1) d

              3 = a₁ + 10 d  ...............(eqn 1)

equation for 26 _{th}\\ term:

               a_{26}\\ = a₁ + (26-1) d

               0 = a₁ + 25 d  ...............(eqn 2)

Step 3:

now subtract equation 2 from 1, we get

             d = \frac{-1}{5}   .................. (common difference)

put this value of d in equation 1, we get:

             3 = a₁ + 10 d

             3 = a₁ + 10( \frac{-1}{5})

             3 = a₁ + (-2)

              a₁ = 5 ............... (first term)

Step 4:

to find number of terms:

             a_{n}\\ = a₁ + (n-1) d

here take a_{n}\\ as last term, a₁ = first term, d = common difference

so,

              \frac{-1}{5} = 5 + (n-1) (\frac{-1}{5} )

               \frac{-1}{5} = 5 - (n-1)/5

               (n-1)/5 = 5 + \frac{1}{5}

               (n-1)/5 = 26/5

               (n-1) = (26/5)*5

               n-1 = 26

               n= 26 + 1

               n = 27 ............... (number of terms)

so the answer is :

common difference = (-1/5)

number of terms = 27

         

Answered by hukam0685
9

Step-by-step explanation:

Given that: 26th, 11th and last term of an ap are 0, 3 and -1/5 respectively .

To find:

find the common difference and the number of terms

Solution:

Let the first term of A.P. is a

common difference is d

no. of terms: n

General term of AP

\bold{a_n = a + (n - 1)d} \\  \\

26th term is 0

a_{26} = a + 25d \\  \\ a + 25d = 0 \:  \:  \: ...eq1

11th term is 3

a_{11}= a + 10d \\  \\ a + 10d = 3 \:  \:  \: ...eq2

From eq1 and eq2

a + 25d = 0 \\ a + 10d = 3 \\ ( - )( - ) \:  \: ( - ) \\  -  -  -  -  -  -  \\ 15d =  - 3 \\  \\ d =  \frac{ - 3}{15}  \\  \\ \bold{d =  \frac{ - 1}{5}}  \\  \\

Put the value of d in eq1

a + 25d = 0 \\  \\ a + 25 \times ( \frac{ - 1}{5} ) = 0 \\  \\ \bold{a = 5 }\\  \\

Now,find the value of n,

as last term is -1/5

 \frac{ - 1}{5}  = 5 + (n - 1)( \frac{ - 1}{5} ) \\  \\  \frac{ - 1}{5} - 5 =  \frac{ - 1}{5} (n - 1) \\  \\  \frac{ - 26}{5}  = \frac{ - 1}{5} (n - 1) \\  \\ 26 = n - 1 \\  \\ \bold{n = 27} \\  \\

First term a= 5

Common difference d= -1/5

Total terms= 27

Hope it helps you.

Similar questions