English, asked by patelshaily6847, 2 months ago

27. A right cicular cylinder has base radius 14 cm and heiht 21 cm. Find (i) Volumeof
cytinder (ii) Curved surface area.

Answers

Answered by pandaXop
89

Volume = 12936 cm³

CSA = 1848 cm³

Explanation:

Given:

  • Measure of base radius of right circular cylinder is 14 cm.
  • Measure of height of the same is 21 cm.

To Find:

  • What is the volume & curved surface area of the cylinder ?

Solution: As we know that

Volume of Cylinder = πr²h cu. units

CSA of Cylinder = 2πrh sq. units

So Let's put all the values in the formula.

  • Taking π = 22/7

\implies{\rm } Volume = 22/7 × 14 × 14 × 21

\implies{\rm } 22 × 2 × 14 × 21

\implies{\rm } 22 × 28 × 21

\implies{\rm } 12936 cm³

Hence, the volume of right circular cylinder is 12,936 cm³.

\implies{\rm } CSA = 2 × 22/7 × 14 × 21

\implies{\rm } 44 × 2 × 21

\implies{\rm } 88 × 21

\implies{\rm } 1848 cm²

Hence, the curved surface area of right circular cylinder is 1848 cm².

Answered by BrainlyRish
57

Given : A right cicular cylinder has base radius 14 cm and hieght 21 cm .

Exigency To Find : (i) Volume of cylinder (ii) Curved surface area of Cylinder.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Given that ,

  • Radius ( r ) of the cylinder is 14 cm .
  • Height ( h ) of the Cylinder is 21 cm.

⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀Finding Volume of Cylinder :

\dag\:\:\pmb{ As,\:We\:know\:that\::}\\\\\qquad\maltese\:\:\bf Formula\:for \:Volume\:: \\

\qquad \dag\:\:\bigg\lgroup \pmb{\frak{ Volume_{(Cylinder)} \:=\: \pi r ^2 h \: cu.units }}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , r is the Radius of Cylinder, h is the Height of the cylinder & \sf \pi \:=\:\dfrac{22}{7}\:\:

\qquad \dashrightarrow \sf Volume_{(Cylinder)} \:=\: \pi r ^2 h \: \:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf Volume_{(Cylinder)} \:=\: \pi r ^2 h \: \:\\\\\qquad \dashrightarrow \sf Volume_{(Cylinder)} \:=\: \pi \times (14) ^2 \times 21 \: \:\\\\\qquad \dashrightarrow \sf Volume_{(Cylinder)} \:=\: \pi \times 196 \times 21 \: \:\\\\\qquad \dashrightarrow \sf Volume_{(Cylinder)} \:=\: \dfrac{22}{7} \times 196 \times 21 \: \:\\\\\qquad \dashrightarrow \sf Volume_{(Cylinder)} \:=\: \dfrac{22}{\cancel {7}} \times \cancel {196} \times 21 \: \:\\\\\qquad \dashrightarrow \sf Volume_{(Cylinder)} \:=\: 22 \times 28 \times 21 \: \:\\\\\qquad \dashrightarrow \sf Volume_{(Cylinder)} \:=\: 22 \times 588 \: \:\\\\\qquad \dashrightarrow \sf Volume_{(Cylinder)} \:=\: 12936\: \:\\\\\qquad \therefore \pmb{\underline{\purple{\frak{\:Volume_{(Cylinder)} \:=\: 12936\:cm^3  }}} }\:\:\bigstar \\

\qquad\therefore \underline { \sf Hence,  \: The \:Volume \:of \:Cylinder \:is \;\bf 12936 \:cm^3 \:}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀Finding Curved Surface Area ( C.S.A ) of Cylinder :

\dag\:\:\pmb{ As,\:We\:know\:that\::}\\\\\qquad\maltese\:\:\bf Formula\:for \:C.S.A\:: \\

\qquad \dag\:\:\bigg\lgroup \pmb{\frak{ C.S.A_{(Cylinder)} \:=\: 2\pi r  h \: sq.units }}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , r is the Radius of Cylinder, h is the Height of the cylinder & \sf \pi \:=\:\dfrac{22}{7}\:\:

\qquad \dashrightarrow \sf C.S.A_{(Cylinder)} \:=\: 2\pi r  h \: \:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf C.S.A_{(Cylinder)} \:=\: 2\pi r  h \: \:\\\\\qquad \dashrightarrow \sf C.S.A_{(Cylinder)} \:=\: 2\times \dfrac{22}{7} \times 14 \times   21 \: \:\\\\\qquad \dashrightarrow \sf C.S.A_{(Cylinder)} \:=\: 2\times \dfrac{22}{\cancel {7}} \times \cancel {14} \times   21 \: \:\\\\\qquad \dashrightarrow \sf C.S.A_{(Cylinder)} \:=\: 2\times 22 \times 2 \times   21 \: \:\\\\\qquad \dashrightarrow \sf C.S.A_{(Cylinder)} \:=\: 44 \times 2 \times   21 \: \:\\\\\qquad \dashrightarrow \sf C.S.A_{(Cylinder)} \:=\: 88 \times   21 \: \:\\\\\qquad \dashrightarrow \sf C.S.A_{(Cylinder)} \:=\: 1848\: \:\\\\\qquad \therefore \pmb{\underline{\purple{\frak{\:C.S.A_{(Cylinder)} \:=\: 1848\:cm^2  }}} }\:\:\bigstar \\

\qquad\therefore \underline { \sf Hence,  \: The \:Curved \:Surface \:Area\:of \:Cylinder \:is \;\bf 1848 \:cm^2 \:}\\

Attachments:
Similar questions