Math, asked by deepika146, 1 year ago

27.
A sphere, a cylinder and a cone are of the same
radius and same height. Find the ratio of their curved
surface.​

Answers

Answered by Anonymous
125

\bold{\underline{\underline{\huge{\sf{AnsWer:}}}}}

Ratio = 22 : 2 : 1

\bold{\underline{\underline{\large{\sf{StEp\:by\:stEp\:explanation:}}}}}

GiVeN :

  • A sphere, a cylinder and a cone are of the same radius and same height.

To FiNd :

  • Ratio of curved surface of sphere, cylinder and cone.

SoLuTiOn :

We have three geometric shapes,

  • Sphere
  • Cylinder
  • Cone

The ratio of curved surface equals to the ratio of the formula of the curved surface.

Sphere :

\sf{\large{\boxed{\red{4\:\pi\:r^2}}}}

Cylinder :

\sf{\large{\boxed{\blue{2\:\pi\:r\:h}}}}

Cone :

\sf{\large{\boxed{\red{\pi\:r\:l}}}}

Given that the shapes are of the same radius and same height.

\longrightarrow\sf{\therefore{r\:=\:h}}

Now let's move forward with the solution,

\longrightarrow\sf{4\:\pi\:r^2\:\::\:\:2\:\pi\:r\:h\:\::\:\:\pi\:r\:l}

\longrightarrow\sf{4\:\pi\:r^2\:\::\:\:2\:\pi\:r\:h\:\::\:\:\pi\:r\:({\sqrt{r^2\:+\:h^2)}}} \sf{\because{l\:=\:{\sqrt{r^2\:+\:h^2}}}}

Now, substitute r instead of h,

\longrightarrow\sf{4\:\pi\:r^2\:\::\:\:2\:\pi\:r\:r\:\::\:\:\pi\:r\:({\sqrt{r^2\:+\:r^2)}}}

\longrightarrow\sf{4\:\pi\:r^2\:\::\:\:2\:\pi\:r^2\:\::\:\:\pi\:r\:({\sqrt{2\:r^2)}}}

\longrightarrow\sf{4\:\pi\:r^2\:\::\:\:2\:\pi\:r^2\:\::\:\:\pi\:r\:({\sqrt{2)}\:r}}

\longrightarrow\sf{4\:\pi\:r^2\:\::\:\:2\:\pi\:r^2\:\::\:\:({\sqrt{2)}\pi\:r\:\times\:r}}

\longrightarrow\sf{4\:\pi\:r^2\:\::\:\:2\:\pi\:r^2\:\::\:\:({\sqrt{2)}\pi\:r^2}}

We can now strikeout π,

\longrightarrow\sf{4\:\::\:\:2\:\:\::\:\:{\sqrt{2}}}

Now, we can divide throughout by 2,

\longrightarrow\sf{\dfrac{4}{\sqrt{2}}} : \sf{\dfrac{2}{\sqrt{2}}} : \sf{\dfrac{\sqrt{2}}{\sqrt{2}}}

Which simplies into,

\longrightarrow\sf{2{\sqrt{2}\:\::\:{\sqrt{2}\:\::\:\:1}}}

Similar questions