Math, asked by bhbhi9868, 1 year ago

27. Find the number of terms of the AP 18, 15, 12. ....... so that their sum is 45. Explain the double
answer

Answers

Answered by BrainlyConqueror0901
42

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Number\:of\:terms=3\:and\:10}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies A.P = 18,15,12,... \\   \\  \implies First \: term(a) = 18 \\  \\  \implies Common \: difference(d) =  - 3 \\  \\  \implies  s_{n} = 45 \\  \\  \underline \bold{ To \: Find : } \\  \implies n = ?

• According to given question :

 \bold{Using \: formula \: of \: sum \: of \:  n_{th} \: term : } \\  \implies  s_{n} =  \frac{n}{2}(2a + (n - 1) \times d) \\  \\  \implies 45 =  \frac{n}{2}  (2 \times 18 + (n - 1) \times  - 3 \\  \\  \implies 45 \times 2 = n(36  - 3n + 3) \\  \\  \implies 90 = n(39 - 3n) \\  \\  \implies 3 {n}^{2}  - 39n + 90 = 0 \\  \\  \implies  {n}^{2}  - 13n +30 = 0 \\  \\  \implies  {n}^{2} - 10n- 3n  + 30 = 0 \\  \\   \implies n(n - 10) - 3(n - 10) = 0 \\  \\  \implies n =  3 \: and \: 10 \\  \\ \bold{Note :  In \: A.P \: value \: of \: n \: never \: in \: negative} \\   \bold{   \implies n = 3\:and\:10}

Answered by Anonymous
21

 \large \sf \underline{ \underline{ \sf \: Answer : \:  \:  \:  }}

\sf  n = 10 \:  \: or \:  \: n = 3

 \large \sf \underline{ \underline{ \sf \:  \: Explaination : \:  \:  \:  }}

Given ,

First term (a) = 18

Common difference (d) = -3

Sum of nth term (Sn) = 45

We Know that ,

 \huge{ \star}   \sf S_{n} =  \frac{n}{2} \bigg (2a + (n - 1)d \bigg)

 \to \sf 45 =  \frac{n}{2}  \bigg(2 \times 18 + (n - 1)( - 3) \bigg) \\  \\ \to \sf 90 = n(36 - 3n + 3) \\  \\\to \sf 90 = 39n  - 3 {n}^{2}  \\  \\\to \sf 3 {n}^{2}  - 39n + 90 = 0 \\  \\\to \sf 3( {n}^{2}  - 13n + 30) = 0 \\  \\ \to \sf {n}^{2}  - 10n - 3n + 30  = 0\\  \\\to \sf n(n - 10) - 3(n - 10) = 0 \\  \\\to \sf (n - 10)(n - 3) = 0 \\  \\\to \sf  n = 10 \:  \: or \:  \: n = 3

 \thereforeThe required value of n is 10 or 3

__________________Tera Bhai ❤

Similar questions