Math, asked by bhbhi9868, 10 months ago

27. Find the number of terms of the AP 18, 15, 12. ....... so that their sum is 45. Explain the double
answer

Answers

Answered by BrainlyConqueror0901
42

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Number\:of\:terms=3\:and\:10}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies A.P = 18,15,12,... \\   \\  \implies First \: term(a) = 18 \\  \\  \implies Common \: difference(d) =  - 3 \\  \\  \implies  s_{n} = 45 \\  \\  \underline \bold{ To \: Find : } \\  \implies n = ?

• According to given question :

 \bold{Using \: formula \: of \: sum \: of \:  n_{th} \: term : } \\  \implies  s_{n} =  \frac{n}{2}(2a + (n - 1) \times d) \\  \\  \implies 45 =  \frac{n}{2}  (2 \times 18 + (n - 1) \times  - 3 \\  \\  \implies 45 \times 2 = n(36  - 3n + 3) \\  \\  \implies 90 = n(39 - 3n) \\  \\  \implies 3 {n}^{2}  - 39n + 90 = 0 \\  \\  \implies  {n}^{2}  - 13n +30 = 0 \\  \\  \implies  {n}^{2} - 10n- 3n  + 30 = 0 \\  \\   \implies n(n - 10) - 3(n - 10) = 0 \\  \\  \implies n =  3 \: and \: 10 \\  \\ \bold{Note :  In \: A.P \: value \: of \: n \: never \: in \: negative} \\   \bold{   \implies n = 3\:and\:10}

Answered by Anonymous
21

 \large \sf \underline{ \underline{ \sf \: Answer : \:  \:  \:  }}

\sf  n = 10 \:  \: or \:  \: n = 3

 \large \sf \underline{ \underline{ \sf \:  \: Explaination : \:  \:  \:  }}

Given ,

First term (a) = 18

Common difference (d) = -3

Sum of nth term (Sn) = 45

We Know that ,

 \huge{ \star}   \sf S_{n} =  \frac{n}{2} \bigg (2a + (n - 1)d \bigg)

 \to \sf 45 =  \frac{n}{2}  \bigg(2 \times 18 + (n - 1)( - 3) \bigg) \\  \\ \to \sf 90 = n(36 - 3n + 3) \\  \\\to \sf 90 = 39n  - 3 {n}^{2}  \\  \\\to \sf 3 {n}^{2}  - 39n + 90 = 0 \\  \\\to \sf 3( {n}^{2}  - 13n + 30) = 0 \\  \\ \to \sf {n}^{2}  - 10n - 3n + 30  = 0\\  \\\to \sf n(n - 10) - 3(n - 10) = 0 \\  \\\to \sf (n - 10)(n - 3) = 0 \\  \\\to \sf  n = 10 \:  \: or \:  \: n = 3

 \thereforeThe required value of n is 10 or 3

__________________Tera Bhai ❤

Similar questions