Math, asked by sonamrehan2547, 9 months ago

27. Find the sum
(1/2) + (1/6) + (1/12) + ...... + 1/156

Answers

Answered by pulakmath007
16

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

 \frac{1}{2}  +  \frac{1}{6}  +  \frac{1}{12}  + ............ +  \frac{1}{156}

 =  \frac{1}{1 \times 2}  +  \frac{1}{2 \times 3}  +  \frac{1}{3 \times 4}  + ......... +  \frac{1}{12 \times 13}

 =    \frac{(2 - 1)}{1 \times 2}  +  \frac{(3 - 2)}{2 \times 3}  +  \frac{(4 - 3)}{3 \times 4}  + ......... +  \frac{(13 - 12)}{12 \times 13}

 =  \frac{2}{ 1\times 2}  -  \frac{1}{1 \times 2}  +   \frac{3}{2 \times 3} -  \frac{2}{2 \times 3}   + \frac{4}{3 \times 4}  -  \frac{3}{3 \times 4}  + ......... +  \frac{13}{12 \times 13}  -  \frac{12}{12 \times 13}

 =  1  -  \frac{1}{ 2}  +   \frac{1}{2 } -  \frac{1}{ 3}  +  \frac{1}{3 }  -  \frac{1}{4}  + ......... +  \frac{1}{12}  -  \frac{1}{13}

 = 1 -  \frac{1}{13}

 =  \frac{(13 - 1)}{13}

 =  \frac{12}{13}

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}</p><p>

Similar questions