Math, asked by kirankiru63939, 3 months ago

27. From a point on the ground, the angles of elevation of the top and bottom of
a transmission tower fixed at the top of a 20m high building are 60% and 45°
respectively. Find the height of the transmission tower
A
0=60
B
20m
09
Ist
1 Science E SI OP
C С
D​

Answers

Answered by mathdude500
2

Correct Statement :-

  • From a point on the ground, the angles of elevation of the top and bottom of a transmission tower fixed at the top of a 20m high building are 60° and 45° respectively. Find the height of the transmission tower.

\large\underline{\sf{Solution-}}

Let BC be the height of building.

  • So, BC = 20 m

Let Height of transmission tower be CD = 'x'.

Let A be the point on the ground at a distance of 'y' meter from the foot of the building B.

The angle of elevation from point A to C and D be 45° and 60°.

So,

\rm :\longmapsto\:In \: \triangle \: ABC

\rm :\longmapsto\:tan45 \degree \:  = \dfrac{BC}{AB}

\rm :\longmapsto\:1 = \dfrac{20}{y}

\bf\implies \:y = 20 \: m -  -  - (1)

Now,

\rm :\longmapsto\:In \: \triangle \: ADB

\rm :\longmapsto\:tan60 \degree \:  = \dfrac{BD}{AB}

\rm :\longmapsto\: \sqrt{3}  = \dfrac{x + 20}{y}

\rm :\longmapsto\: \sqrt{3}  = \dfrac{x + 20}{20}  \:  \:  \:   \:  \:  \:  \:  \: \{using \: (1) \}

\rm :\longmapsto\:20 \sqrt{3}  = 20 + x

\rm :\longmapsto\:20 \sqrt{3} - 20  = x

\bf\implies\:x=20(\sqrt{3}-1)=20(1.732 -1)=14.64\:m

\boxed{\bf\: Hence \: height \: of \: transmission \: tower = 14.64 \: m}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions