| 27. If sin (A + B) = sin A cos B+cos Asin B
and cos (A - B) = cos A cos B+sin A sin B,
find the values of (i) sin 75° and (ii) cos 15°
Answers
Given identities are,
Using these, we have to find,
(i) sin 75°
(ii) cos 15°
But before, we have to recall some trigonometric values which are given below.
→ sin 30° = cos 60° = 1/2
→ sin 45° = cos 45° = 1/√2
→ sin 60° = cos 30° = √3/2
So we may calculate using these values.
And one more, we must recall this.
sin α = cos (90 - α)
So, add the given values in the question. We get 90°.
75° + 15° = 90°
So we can say,
sin 75° = cos 15°
(i) sin 75°
⇒ sin (30° + 45°)
⇒ sin 30° cos 45° + cos 30° sin 45°
⇒ (1/2) · (1/√2) + (√3/2) · (1/√2)
⇒ (1/√2) · ((1/2) + (√3/2))
⇒ (1/√2)((1 + √3)/2)
⇒ (1 + √3) / 2√2
⇒ cos 15°
Hence,
sin 75° = cos 15° = (1 + √3) / 2√2
Now we can substitute the approximate values of the irrationals.
→ √2 ≈ 1.414
→ √3 ≈ 1.732
So,
(1 + √3) / 2√2
⇒ (1 + 1.732) / (2 · 1.414)
⇒ 2.732 / 2.828
⇒ 0.9661
Trigonometric Identities :
sin ( A + B) = sinA cos B + cosA sinB
cos(A - B ) = cosA cosB + sinA sinB
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
1 ). sin 75°
Split sin ( 75° ) as sin ( 45° + 30°)
Let A = 45°, B = 30°
Using formula of sin ( A + B ) ,
sin ( 45° + 30°) = sin 45°. cos30° + cos 45°. sin 30°
sin ( 45° + 30°) =
⛛ sin ( 45° + 30°) =
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
2 ). cos 15°
Using above formula of cos ( A - B),
Let A = 45° and B = 15°
cos ( 45° - 30°) = cos 45°. cos30° + sin 45°. sin 30°
cos ( 45° - 30° ) =
⛛ cos ( 45° - 30° ) =
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Since, sin( 90 - 15)° = cos 15° .
⛛ So, the answer of both parts is same.