Math, asked by sunny56135, 1 year ago

27. If sin (A+B) = sin Acos B+cos A sin B
and cos (A - B) = cos Acos B+sin Asin B,
find the values of (i) sin 75° and (ii) cos 15º.​

Answers

Answered by vidisha30
11

HEY BUDDY....HERE'S YOUR ANSWER....

I HOPE THIS WAS HELPFUL....

MARK MY ANSWER AS THE BRAINLIEST ONE IF YOU FOUND IT HELPFUL...

FOLLOW ME IF YOU WISH TO....

Attachments:
Answered by Anonymous
26

Given :-

 Sin 75^{\circ}

Cos15^{\circ}

To find :-

Their values using suitable formula.

Solution:-

  • It can be written as.

 \mathsf{Sin 75^{\circ}}

\mathsf{ Sin ( 30 + 45)}

 \mathsf{Sin30 .Cos45 + Cos 30 . Sin 45}

 \mathsf{\left(\dfrac{1}{2} \times \dfrac{1}{\sqrt{2}} \right)+ \left(\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{2}}\right)}

\mathsf{ \left(\dfrac{1}{2\sqrt{2}}\right)+ \left(\dfrac{\sqrt{3}}{2\sqrt{2}}\right)}

 \mathsf{\dfrac{1 + \sqrt{3}}{2\sqrt{2}}}

hence,

The value is  \mathsf{\dfrac{1 + \sqrt{3}}{2\sqrt{2}}}

 \mathsf{Cos 15^{\circ}}

 \mathsf{Cos (45 -30) }

 \mathsf{Cos 45 .Cos 30 + Sin45 .Sin 30}

 \mathsf{\left(\dfrac{1}{2\sqrt{2}}\times \dfrac{\sqrt{3}}{2}\right)+ \left(\dfrac{1}{2\sqrt{2}}\times{\dfrac{1}{2}}\right)}

 \mathsf{\left(\dfrac{\sqrt{3}}{2\sqrt{2}}\right)+\left(\dfrac{1}{2\sqrt{2}}\right)}

\mathsf{ \dfrac{\sqrt{3}+1}{2\sqrt2}}

hence,

The value is \mathsf{ \dfrac{\sqrt{3}+1}{2\sqrt2}}

  • Formula used :-

 \mathsf{sin (A+B) = sin A.cos B+cos A. sin B }

 \mathsf{cos (A - B) = cos A.cos B+sin A.sin B}

Similar questions