Math, asked by fuhairme, 4 months ago

27. If x= p tan + q sec 0 and y = p sec 0 + q tan e then prove that x² - y² = q^ - p^​

Answers

Answered by arvindsahai2
0

Answer:

x = p secθ + q tanθ and y = p tanθ + q secθ

L.H.S. = x2 - y2

= (p secθ + q tanθ)2 - (p tanθ + q secθ)2

= p2 sec2θ + 2pq secθ tanθ + q2 tan2θ - (p2tan2θ + 2pq tanθ secθ + q2sec2θ)

= p2sec2θ + 2pq secθ tanθ + q2 tan2θ - p2 tan2θ - 2pq tanθ secθ - q2 sec2θ

= (p2-q2) sec2θ + (q2-p2) tan2θ

= (p2-q2) sec2θ + (q2-p2) tan2θ = (p2-q2) (sec2θ - tan2θ)

= (p2-q2) [since 1 + tan2θ = sec2θ]

= R.H.S. ∴ x2-y2 = p2-q2.

Answered by ItzMeMukku
16

x = p secθ + q tanθ and y = p tanθ + q secθ

L.H.S. = x2 - y2

= (p secθ + q tanθ)2 - (p tanθ + q secθ)2

= p2 sec2θ + 2pq secθ tanθ + q2 tan2θ

(p2tan2θ + 2pq tanθ secθ + q2sec2θ)

= p2sec2θ + 2pq secθ tanθ + q2 tan2θ - p2 tan2θ - 2pq tanθ secθ - q2 sec2

= (p2-q2) sec2θ + (q2-p2) tan2θ

= (p2-q2) sec2θ + (q2-p2) tan2θ = (p2-q2) (sec2θ -

tan2θ)

= (p2-q2) [since 1 + tan2θ = sec2θ]

= R.H.S. ∴ x2-y2 = p2-q2.

Similar questions