Math, asked by rahulkumarnag834048, 6 months ago

27. In a AABC, B = 90, AB = 12 cm and BC = 5 cm.
Find (i) cos A (ii) cosec A (iii) cos C (iv) cosec C​

Answers

Answered by Anonymous
59

Given:-

  • ∠B = 90°
  • AB = 12cm
  • BC = 5cm

Find:-

  • cos A
  • cosec A
  • cos C
  • cosec C

Diagram:-

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put( - 0.13,2.5){\large\bf 12cm}\put(2.8,.6){\large\bf 5cm}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\end{picture}

Solution:-

In ABC

\underline{\boxed{\sf H^2 = P^2 + B^2}}\qquad\bigg\lgroup \sf Using\: Pythogoras\: Theorem\bigg\rgroup

\implies\sf AC^2  =  AB^2 + BC^2  \\

 \sf where  \small{\begin{cases}  \sf AB = 12cm \\  \sf BC = 5cm \end{cases}}

Substituting these values:-

\dashrightarrow\sf AC^2  =  AB^2 + BC^2  \\  \\

\dashrightarrow\sf AC^2  =  12^2 + 5^2  \\  \\

\dashrightarrow\sf AC^2  =  144 + 25  \\  \\

\dashrightarrow\sf AC^2  =  169  \\  \\

\dashrightarrow\sf AC= \sqrt{169}  \\  \\

\dashrightarrow\sf AC= 13cm\\  \\

Now, for T-ratios of A.

Base = AB

Perpendicular = BC

 \sf (i) \cos A = \dfrac{AB}{AC} \\

 \sf where  \small{\begin{cases}  \sf AB = 12cm \\  \sf AC = 13cm \end{cases}}

Substituting these values:-

 \sf  : \to\cos A = \dfrac{AB}{AC} \\

 \sf  : \to\cos A = \dfrac{12}{13} \\

 \underline{\boxed{\sf \cos A = \dfrac{12}{13}}}

______________________

 \sf (ii) \cosec A = \dfrac{1}{ \sin A} \\

 \sf\to \cosec A = \dfrac{1}{\dfrac{BC}{AC}} \\

 \sf\to \cosec A =\dfrac{AC}{BC} \\

 \sf where  \small{\begin{cases}  \sf AC=13cm \\ \sf BC = 5cm \end{cases}}

Substituting these values:-

 \sf :\to \cosec A =\dfrac{AC}{BC} \\   \\

 \sf :\to \cosec A =\dfrac{13}{5} \\   \\

 \underline{\boxed{\sf \cosec A =\dfrac{13}{5}}}

______________________

Now, for T-ratio A.

Base = BC

Perpendicular = AB

 \sf (iii) \cos C = \dfrac{BC}{AC} \\

 \sf where  \small{\begin{cases}  \sf AC=13cm \\ \sf BC = 5cm \end{cases}}

Substituting these values:-

 \sf \to \cos C = \dfrac{BC}{AC}  \\  \\

 \underline{\boxed{\sf \cos C = \dfrac{5}{13}}}

______________________

 \sf (iv) \cosec C =\dfrac{1}{ \sin A} \\

 \sf\to \cosec A = \dfrac{1}{\dfrac{AB}{AC}} \\

 \sf\to \cosec A =\dfrac{AC}{AB}  \\

 \sf where  \small{\begin{cases}  \sf AB = 12cm \\  \sf AC = 13cm \end{cases}}

Substituting these values:-

 \sf\to \cosec A =\dfrac{AC}{AB}  \\  \\

 \sf\to \cosec A =\dfrac{13}{12}  \\  \\

 \underline{\boxed{\sf \cosec A =\dfrac{13}{12}}}

______________________

Similar questions